Update README.md
Browse files
README.md
CHANGED
|
@@ -9,13 +9,11 @@ tags:
|
|
| 9 |
- lora
|
| 10 |
inference: true
|
| 11 |
base_model: stabilityai/stable-diffusion-xl-base-1.0
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
-
|
| 15 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
# LoRA text2image fine-tuning - 0x7o/RussianVibe-XL-v2.0
|
| 19 |
|
| 20 |
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the 0x7o/RussianVibe-data dataset. You can find some example images in the following.
|
| 21 |
|
|
@@ -35,13 +33,13 @@ Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
|
| 35 |
#### How to use
|
| 36 |
|
| 37 |
```python
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
| 9 |
- lora
|
| 10 |
inference: true
|
| 11 |
base_model: stabilityai/stable-diffusion-xl-base-1.0
|
| 12 |
+
datasets:
|
| 13 |
+
- 0x7o/RussianVibe-data
|
| 14 |
---
|
| 15 |
|
| 16 |
+
# RussianVibe XL v2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the 0x7o/RussianVibe-data dataset. You can find some example images in the following.
|
| 19 |
|
|
|
|
| 33 |
#### How to use
|
| 34 |
|
| 35 |
```python
|
| 36 |
+
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
| 37 |
+
import torch
|
| 38 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
|
| 39 |
+
pipe.load_lora_weights("0x7o/RussianVibe-XL-v2.0")
|
| 40 |
+
pipe.to("cuda")
|
| 41 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
| 42 |
+
prompt = "The sun is setting through a window, casting a warm glow on the cityscape beyond. The sun casts a warm orange glow on the buildings in the distance, creating a beautiful and serene atmosphere."
|
| 43 |
+
image = pipe(prompt, num_inference_steps=30, guidance_scale=5.0, negative_prompt="bad quality, painting, art").images[0]
|
| 44 |
+
image.save("output.png")
|
| 45 |
+
```
|