cmeraki commited on
Commit
e5cea50
·
verified ·
1 Parent(s): 3ae1cd5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +147 -170
README.md CHANGED
@@ -1,199 +1,176 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
 
 
 
 
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
 
51
 
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: cc-by-sa-4.0
3
+ datasets:
4
+ - speechcolab/gigaspeech
5
+ - parler-tts/mls_eng_10k
6
+ - reach-vb/jenny_tts_dataset
7
+ - MikhailT/hifi-tts
8
+ - ylacombe/expresso
9
+ - keithito/lj_speech
10
+ - collabora/ai4bharat-shrutilipi
11
+ language:
12
+ - en
13
+ - hi
14
+ base_model:
15
+ - openai-community/gpt2
16
+ pipeline_tag: text-to-speech
17
  library_name: transformers
 
18
  ---
19
 
20
+ | Platform | Link |
21
+ |----------|------|
22
+ | 🌎 Live Demo | [indrivoice.ai](https://indrivoice.ai/) |
23
+ | 𝕏 Twitter | [@11mlabs](https://x.com/11mlabs) |
24
+ | 🐱 GitHub | [Indri Repository](https://github.com/cmeraki/indri) |
25
+ | 🤗 Hugging Face (Collection) | [Indri collection](https://huggingface.co/collections/11mlabs/indri-673dd4210b4369037c736bfe) |
26
+ | 📝 Release Blog | [Release Blog](https://www.indrivoice.ai/blog/2024-11-21-building-indri-tts) |
27
 
28
+ # Model Card for indri-0.1-350m-tts
29
 
30
+ Indri is a series of audio models that can do TTS, ASR, and audio continuation. This is the medium sized model (350M) in our series and supports TTS tasks in 2 languages:
31
 
32
+ 1. English
33
+ 2. Hindi
34
 
35
  ## Model Details
36
 
37
  ### Model Description
38
 
39
+ `indri-0.1-350m-tts` is a novel, ultra-small, and lightweight TTS model based on the transformer architecture.
40
+ It models audio as tokens and can generate high-quality audio with consistent style cloning of the speaker.
41
 
42
+ ### Samples
43
 
44
+ | Text | Sample |
45
+ | --- | --- |
46
+ |अतीत गौरवशाली, वर्तमान आशावादी, भविष्य उज्जवल| <audio controls src="https://huggingface.co/11mlabs/indri-0.1-124m-tts/resolve/main/data/417f5f1b-d641-4393-b922-9da9644dcd1b.wav" title="Title"></audio> |
47
+ |भाइयों और बहनों, ये हमारा सौभाग्य है कि हम सब मिलकर इस महान देश को नई ऊंचाइयों पर ले जाने का सपना देख रहे हैं।| <audio controls src="https://huggingface.co/11mlabs/indri-0.1-124m-tts/resolve/main/data/6e0a4879-0379-4166-a52c-03220a3f2922.wav" title="Title"></audio> |
48
+ |Hello दोस्तों, future of speech technology mein अपका स्वागत है | <audio controls src="https://huggingface.co/11mlabs/indri-0.1-124m-tts/resolve/main/data/5848b722-efe3-4e1f-a15e-5e7d431cd475.wav" title="Title"></audio> |
49
+ |Artificial Intelligence's collaborative hub: Transforming Machine Learning together| <audio controls src="https://huggingface.co/11mlabs/indri-0.1-124m-tts/resolve/main/data/12e5a00e-834b-4c3c-a8b8-7f545ba7088c.wav" title="Title"></audio> |
50
+ |Intelligent machines processing data at lightning-fast electronic speeds| <audio controls src="https://huggingface.co/11mlabs/indri-0.1-124m-tts/resolve/main/data/e21efa09-e179-42b7-982a-b686038a8f60.wav" title="Title"></audio> |
51
 
 
52
 
53
+ ### Key features
54
 
55
+ 1. Extremely efficient, based on GPT-2 medium architecture. The methodology can be extended to any autoregressive transformer-based architecture.
56
+ 2. Supports voice cloning with small prompts (<5s).
57
+ 3. Code mixing text input in 2 languages - English and Hindi.
58
+ 4. Ultra-fast. Can generate 5 seconds of audio per second on Amphere generation NVIDIA GPUs, and up to 10 seconds of audio per second on Ada generation NVIDIA GPUs.
59
 
60
+ ### Details
61
 
62
+ 1. Model Type: GPT-2 based language model
63
+ 2. Size: 350M parameters
64
+ 3. Language Support: English, Hindi
65
+ 4. License: CC BY 4.0
66
 
67
+ ### Speed
68
 
 
69
 
 
70
 
71
+ ## Technical details
72
 
73
+ Here's a brief of how the model works:
74
 
75
+ 1. Converts input text into tokens
76
+ 2. Runs autoregressive decoding on GPT-2 based transformer model and generates audio tokens
77
+ 3. Decodes audio tokens (using [Kyutai/mimi](https://huggingface.co/kyutai/mimi)) to audio
78
 
79
+ Please read our blog [here](https://www.indrivoice.ai/blog/2024-11-21-building-indri-tts) for more technical details on how it was built.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
 
81
  ## How to Get Started with the Model
82
 
83
+ ### 🤗 pipelines
84
+ Use the code below to get started with the model. Pipelines are the best way to get started with the model.
85
+
86
+ ```python
87
+ import torch
88
+ import torchaudio
89
+ from transformers import pipeline
90
+
91
+ model_id = '11mlabs/indri-0.1-350m-tts'
92
+ task = 'indri-tts'
93
+
94
+ pipe = pipeline(
95
+ task,
96
+ model=model_id,
97
+ device=torch.device('cuda:0'), # Update this based on your hardware,
98
+ trust_remote_code=True
99
+ )
100
+
101
+ output = pipe(['Hi, my name is Indri and I like to talk.'])
102
+
103
+ torchaudio.save('output.wav', output[0]['audio'][0], sample_rate=24000)
104
+ ```
105
+
106
+ ### Self hosted service
107
+
108
+ ```bash
109
+ git clone https://github.com/cmeraki/indri.git
110
+ cd indri
111
+ pip install -r requirements.txt
112
+
113
+ # Install ffmpeg (for Mac/Windows, refer here: https://www.ffmpeg.org/download.html)
114
+ sudo apt update -y
115
+ sudo apt upgrade -y
116
+ sudo apt install ffmpeg -y
117
+
118
+ python -m inference --model_path 11mlabs/indri-0.1-350m-tts --device cuda:0 --port 8000
119
+ ```
120
+
121
+ ## Citation
122
+
123
+ If you use this model in your research, please cite:
124
+
125
+ ```bibtex
126
+ @misc{indri-multimodal-alm,
127
+ author = {11mlabs},
128
+ title = {Indri: Multimodal audio language model},
129
+ year = {2024},
130
+ publisher = {GitHub},
131
+ journal = {GitHub Repository},
132
+ howpublished = {\url{https://github.com/cmeraki/indri}},
133
+ email = {[email protected]}
134
+ }
135
+ ```
136
+
137
+ ## BibTex
138
+ 1. [nanoGPT](https://github.com/karpathy/nanoGPT)
139
+ 2. [Kyutai/mimi](https://huggingface.co/kyutai/mimi)
140
+ ```bibtex
141
+ @techreport{kyutai2024moshi,
142
+ title={Moshi: a speech-text foundation model for real-time dialogue},
143
+ author={Alexandre D\'efossez and Laurent Mazar\'e and Manu Orsini and
144
+ Am\'elie Royer and Patrick P\'erez and Herv\'e J\'egou and Edouard Grave and Neil Zeghidour},
145
+ year={2024},
146
+ eprint={2410.00037},
147
+ archivePrefix={arXiv},
148
+ primaryClass={eess.AS},
149
+ url={https://arxiv.org/abs/2410.00037},
150
+ }
151
+ ```
152
+ 3. [Whisper](https://github.com/openai/whisper)
153
+ ```bibtex
154
+ @misc{radford2022whisper,
155
+ doi = {10.48550/ARXIV.2212.04356},
156
+ url = {https://arxiv.org/abs/2212.04356},
157
+ author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
158
+ title = {Robust Speech Recognition via Large-Scale Weak Supervision},
159
+ publisher = {arXiv},
160
+ year = {2022},
161
+ copyright = {arXiv.org perpetual, non-exclusive license}
162
+ }
163
+ ```
164
+ 4. [silero-vad](https://github.com/snakers4/silero-vad)
165
+ ```bibtex
166
+ @misc{Silero VAD,
167
+ author = {Silero Team},
168
+ title = {Silero VAD: pre-trained enterprise-grade Voice Activity Detector (VAD), Number Detector and Language Classifier},
169
+ year = {2024},
170
+ publisher = {GitHub},
171
+ journal = {GitHub repository},
172
+ howpublished = {\url{https://github.com/snakers4/silero-vad}},
173
+ commit = {insert_some_commit_here},
174
+ email = {[email protected]}
175
+ }
176
+ ```