Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,176 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
library_name: transformers
|
3 |
-
tags: []
|
4 |
---
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
|
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
|
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
-
|
27 |
|
28 |
-
### Model Sources [optional]
|
29 |
|
30 |
-
|
31 |
|
32 |
-
-
|
33 |
-
|
34 |
-
|
|
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
|
|
|
|
|
|
39 |
|
40 |
-
###
|
41 |
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
|
44 |
-
[More Information Needed]
|
45 |
|
46 |
-
|
47 |
|
48 |
-
|
49 |
|
50 |
-
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
[
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
datasets:
|
4 |
+
- speechcolab/gigaspeech
|
5 |
+
- parler-tts/mls_eng_10k
|
6 |
+
- reach-vb/jenny_tts_dataset
|
7 |
+
- MikhailT/hifi-tts
|
8 |
+
- ylacombe/expresso
|
9 |
+
- keithito/lj_speech
|
10 |
+
- collabora/ai4bharat-shrutilipi
|
11 |
+
language:
|
12 |
+
- en
|
13 |
+
- hi
|
14 |
+
base_model:
|
15 |
+
- openai-community/gpt2
|
16 |
+
pipeline_tag: text-to-speech
|
17 |
library_name: transformers
|
|
|
18 |
---
|
19 |
|
20 |
+
| Platform | Link |
|
21 |
+
|----------|------|
|
22 |
+
| 🌎 Live Demo | [indrivoice.ai](https://indrivoice.ai/) |
|
23 |
+
| 𝕏 Twitter | [@11mlabs](https://x.com/11mlabs) |
|
24 |
+
| 🐱 GitHub | [Indri Repository](https://github.com/cmeraki/indri) |
|
25 |
+
| 🤗 Hugging Face (Collection) | [Indri collection](https://huggingface.co/collections/11mlabs/indri-673dd4210b4369037c736bfe) |
|
26 |
+
| 📝 Release Blog | [Release Blog](https://www.indrivoice.ai/blog/2024-11-21-building-indri-tts) |
|
27 |
|
28 |
+
# Model Card for indri-0.1-350m-tts
|
29 |
|
30 |
+
Indri is a series of audio models that can do TTS, ASR, and audio continuation. This is the medium sized model (350M) in our series and supports TTS tasks in 2 languages:
|
31 |
|
32 |
+
1. English
|
33 |
+
2. Hindi
|
34 |
|
35 |
## Model Details
|
36 |
|
37 |
### Model Description
|
38 |
|
39 |
+
`indri-0.1-350m-tts` is a novel, ultra-small, and lightweight TTS model based on the transformer architecture.
|
40 |
+
It models audio as tokens and can generate high-quality audio with consistent style cloning of the speaker.
|
41 |
|
42 |
+
### Samples
|
43 |
|
44 |
+
| Text | Sample |
|
45 |
+
| --- | --- |
|
46 |
+
|अतीत गौरवशाली, वर्तमान आशावादी, भविष्य उज्जवल| <audio controls src="https://huggingface.co/11mlabs/indri-0.1-124m-tts/resolve/main/data/417f5f1b-d641-4393-b922-9da9644dcd1b.wav" title="Title"></audio> |
|
47 |
+
|भाइयों और बहनों, ये हमारा सौभाग्य है कि हम सब मिलकर इस महान देश को नई ऊंचाइयों पर ले जाने का सपना देख रहे हैं।| <audio controls src="https://huggingface.co/11mlabs/indri-0.1-124m-tts/resolve/main/data/6e0a4879-0379-4166-a52c-03220a3f2922.wav" title="Title"></audio> |
|
48 |
+
|Hello दोस्तों, future of speech technology mein अपका स्वागत है | <audio controls src="https://huggingface.co/11mlabs/indri-0.1-124m-tts/resolve/main/data/5848b722-efe3-4e1f-a15e-5e7d431cd475.wav" title="Title"></audio> |
|
49 |
+
|Artificial Intelligence's collaborative hub: Transforming Machine Learning together| <audio controls src="https://huggingface.co/11mlabs/indri-0.1-124m-tts/resolve/main/data/12e5a00e-834b-4c3c-a8b8-7f545ba7088c.wav" title="Title"></audio> |
|
50 |
+
|Intelligent machines processing data at lightning-fast electronic speeds| <audio controls src="https://huggingface.co/11mlabs/indri-0.1-124m-tts/resolve/main/data/e21efa09-e179-42b7-982a-b686038a8f60.wav" title="Title"></audio> |
|
51 |
|
|
|
52 |
|
53 |
+
### Key features
|
54 |
|
55 |
+
1. Extremely efficient, based on GPT-2 medium architecture. The methodology can be extended to any autoregressive transformer-based architecture.
|
56 |
+
2. Supports voice cloning with small prompts (<5s).
|
57 |
+
3. Code mixing text input in 2 languages - English and Hindi.
|
58 |
+
4. Ultra-fast. Can generate 5 seconds of audio per second on Amphere generation NVIDIA GPUs, and up to 10 seconds of audio per second on Ada generation NVIDIA GPUs.
|
59 |
|
60 |
+
### Details
|
61 |
|
62 |
+
1. Model Type: GPT-2 based language model
|
63 |
+
2. Size: 350M parameters
|
64 |
+
3. Language Support: English, Hindi
|
65 |
+
4. License: CC BY 4.0
|
66 |
|
67 |
+
### Speed
|
68 |
|
|
|
69 |
|
|
|
70 |
|
71 |
+
## Technical details
|
72 |
|
73 |
+
Here's a brief of how the model works:
|
74 |
|
75 |
+
1. Converts input text into tokens
|
76 |
+
2. Runs autoregressive decoding on GPT-2 based transformer model and generates audio tokens
|
77 |
+
3. Decodes audio tokens (using [Kyutai/mimi](https://huggingface.co/kyutai/mimi)) to audio
|
78 |
|
79 |
+
Please read our blog [here](https://www.indrivoice.ai/blog/2024-11-21-building-indri-tts) for more technical details on how it was built.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
## How to Get Started with the Model
|
82 |
|
83 |
+
### 🤗 pipelines
|
84 |
+
Use the code below to get started with the model. Pipelines are the best way to get started with the model.
|
85 |
+
|
86 |
+
```python
|
87 |
+
import torch
|
88 |
+
import torchaudio
|
89 |
+
from transformers import pipeline
|
90 |
+
|
91 |
+
model_id = '11mlabs/indri-0.1-350m-tts'
|
92 |
+
task = 'indri-tts'
|
93 |
+
|
94 |
+
pipe = pipeline(
|
95 |
+
task,
|
96 |
+
model=model_id,
|
97 |
+
device=torch.device('cuda:0'), # Update this based on your hardware,
|
98 |
+
trust_remote_code=True
|
99 |
+
)
|
100 |
+
|
101 |
+
output = pipe(['Hi, my name is Indri and I like to talk.'])
|
102 |
+
|
103 |
+
torchaudio.save('output.wav', output[0]['audio'][0], sample_rate=24000)
|
104 |
+
```
|
105 |
+
|
106 |
+
### Self hosted service
|
107 |
+
|
108 |
+
```bash
|
109 |
+
git clone https://github.com/cmeraki/indri.git
|
110 |
+
cd indri
|
111 |
+
pip install -r requirements.txt
|
112 |
+
|
113 |
+
# Install ffmpeg (for Mac/Windows, refer here: https://www.ffmpeg.org/download.html)
|
114 |
+
sudo apt update -y
|
115 |
+
sudo apt upgrade -y
|
116 |
+
sudo apt install ffmpeg -y
|
117 |
+
|
118 |
+
python -m inference --model_path 11mlabs/indri-0.1-350m-tts --device cuda:0 --port 8000
|
119 |
+
```
|
120 |
+
|
121 |
+
## Citation
|
122 |
+
|
123 |
+
If you use this model in your research, please cite:
|
124 |
+
|
125 |
+
```bibtex
|
126 |
+
@misc{indri-multimodal-alm,
|
127 |
+
author = {11mlabs},
|
128 |
+
title = {Indri: Multimodal audio language model},
|
129 |
+
year = {2024},
|
130 |
+
publisher = {GitHub},
|
131 |
+
journal = {GitHub Repository},
|
132 |
+
howpublished = {\url{https://github.com/cmeraki/indri}},
|
133 |
+
email = {[email protected]}
|
134 |
+
}
|
135 |
+
```
|
136 |
+
|
137 |
+
## BibTex
|
138 |
+
1. [nanoGPT](https://github.com/karpathy/nanoGPT)
|
139 |
+
2. [Kyutai/mimi](https://huggingface.co/kyutai/mimi)
|
140 |
+
```bibtex
|
141 |
+
@techreport{kyutai2024moshi,
|
142 |
+
title={Moshi: a speech-text foundation model for real-time dialogue},
|
143 |
+
author={Alexandre D\'efossez and Laurent Mazar\'e and Manu Orsini and
|
144 |
+
Am\'elie Royer and Patrick P\'erez and Herv\'e J\'egou and Edouard Grave and Neil Zeghidour},
|
145 |
+
year={2024},
|
146 |
+
eprint={2410.00037},
|
147 |
+
archivePrefix={arXiv},
|
148 |
+
primaryClass={eess.AS},
|
149 |
+
url={https://arxiv.org/abs/2410.00037},
|
150 |
+
}
|
151 |
+
```
|
152 |
+
3. [Whisper](https://github.com/openai/whisper)
|
153 |
+
```bibtex
|
154 |
+
@misc{radford2022whisper,
|
155 |
+
doi = {10.48550/ARXIV.2212.04356},
|
156 |
+
url = {https://arxiv.org/abs/2212.04356},
|
157 |
+
author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
|
158 |
+
title = {Robust Speech Recognition via Large-Scale Weak Supervision},
|
159 |
+
publisher = {arXiv},
|
160 |
+
year = {2022},
|
161 |
+
copyright = {arXiv.org perpetual, non-exclusive license}
|
162 |
+
}
|
163 |
+
```
|
164 |
+
4. [silero-vad](https://github.com/snakers4/silero-vad)
|
165 |
+
```bibtex
|
166 |
+
@misc{Silero VAD,
|
167 |
+
author = {Silero Team},
|
168 |
+
title = {Silero VAD: pre-trained enterprise-grade Voice Activity Detector (VAD), Number Detector and Language Classifier},
|
169 |
+
year = {2024},
|
170 |
+
publisher = {GitHub},
|
171 |
+
journal = {GitHub repository},
|
172 |
+
howpublished = {\url{https://github.com/snakers4/silero-vad}},
|
173 |
+
commit = {insert_some_commit_here},
|
174 |
+
email = {[email protected]}
|
175 |
+
}
|
176 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|