Upload 2 files
Browse files- hebbian_bloom.py +503 -0
- hebbian_bloom_docs.py +888 -0
hebbian_bloom.py
ADDED
|
@@ -0,0 +1,503 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
###########################################################################################################################################
|
| 2 |
+
#||- - - |6.25.2025| - - - || HEBBIAN BLOOM || - - - | 1990two | - - -||#
|
| 3 |
+
###########################################################################################################################################
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
import numpy as np
|
| 8 |
+
import math
|
| 9 |
+
import hashlib
|
| 10 |
+
from collections import defaultdict, deque
|
| 11 |
+
from typing import List, Dict, Tuple, Optional, Union
|
| 12 |
+
|
| 13 |
+
SAFE_MIN = -1e6
|
| 14 |
+
SAFE_MAX = 1e6
|
| 15 |
+
EPS = 1e-8
|
| 16 |
+
|
| 17 |
+
#||- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 𓅸 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -||#
|
| 18 |
+
|
| 19 |
+
def make_safe(tensor, min_val=SAFE_MIN, max_val=SAFE_MAX):
|
| 20 |
+
tensor = torch.where(torch.isnan(tensor), torch.tensor(0.0, device=tensor.device, dtype=tensor.dtype), tensor)
|
| 21 |
+
tensor = torch.where(torch.isinf(tensor), torch.tensor(max_val, device=tensor.device, dtype=tensor.dtype), tensor)
|
| 22 |
+
return torch.clamp(tensor, min_val, max_val)
|
| 23 |
+
|
| 24 |
+
def safe_cosine_similarity(a, b, dim=-1, eps=EPS):
|
| 25 |
+
if a.dtype != torch.float32:
|
| 26 |
+
a = a.float()
|
| 27 |
+
if b.dtype != torch.float32:
|
| 28 |
+
b = b.float()
|
| 29 |
+
a_norm = torch.norm(a, dim=dim, keepdim=True).clamp(min=eps)
|
| 30 |
+
b_norm = torch.norm(b, dim=dim, keepdim=True).clamp(min=eps)
|
| 31 |
+
return torch.sum(a * b, dim=dim, keepdim=True) / (a_norm * b_norm)
|
| 32 |
+
|
| 33 |
+
def item_to_vector(item, vector_dim=64):
|
| 34 |
+
if isinstance(item, str):
|
| 35 |
+
hash_obj = hashlib.md5(item.encode())
|
| 36 |
+
hash_bytes = hash_obj.digest()
|
| 37 |
+
vector = torch.tensor([b / 255.0 for b in hash_bytes], dtype=torch.float32)
|
| 38 |
+
if len(vector) < vector_dim:
|
| 39 |
+
padding = torch.zeros(vector_dim - len(vector), dtype=torch.float32)
|
| 40 |
+
vector = torch.cat([vector, padding])
|
| 41 |
+
else:
|
| 42 |
+
vector = vector[:vector_dim]
|
| 43 |
+
elif isinstance(item, (int, float)):
|
| 44 |
+
vector = torch.zeros(vector_dim, dtype=torch.float32)
|
| 45 |
+
for i in range(vector_dim // 2):
|
| 46 |
+
freq = 10000 ** (-2 * i / vector_dim)
|
| 47 |
+
vector[2*i] = math.sin(item * freq)
|
| 48 |
+
vector[2*i + 1] = math.cos(item * freq)
|
| 49 |
+
elif torch.is_tensor(item):
|
| 50 |
+
vector = item.flatten().float()
|
| 51 |
+
if len(vector) < vector_dim:
|
| 52 |
+
padding = torch.zeros(vector_dim - len(vector), dtype=torch.float32, device=vector.device)
|
| 53 |
+
vector = torch.cat([vector, padding])
|
| 54 |
+
else:
|
| 55 |
+
vector = vector[:vector_dim]
|
| 56 |
+
else:
|
| 57 |
+
hash_val = hash(str(item)) % (2**31)
|
| 58 |
+
gen = torch.Generator(device='cpu')
|
| 59 |
+
gen.manual_seed(hash_val)
|
| 60 |
+
vector = torch.randn(vector_dim, generator=gen, dtype=torch.float32)
|
| 61 |
+
|
| 62 |
+
return make_safe(vector)
|
| 63 |
+
|
| 64 |
+
###########################################################################################################################################
|
| 65 |
+
###############################################- - - LEARNABLE HASH FUNCTION - - -#####################################################
|
| 66 |
+
|
| 67 |
+
class LearnableHashFunction(nn.Module):
|
| 68 |
+
def __init__(self, input_dim, hash_output_bits=32, learning_rate=0.01):
|
| 69 |
+
super().__init__()
|
| 70 |
+
self.input_dim = input_dim
|
| 71 |
+
self.hash_output_bits = hash_output_bits
|
| 72 |
+
self.learning_rate = learning_rate
|
| 73 |
+
|
| 74 |
+
self.hash_network = nn.Sequential(
|
| 75 |
+
nn.Linear(input_dim, input_dim * 2),
|
| 76 |
+
nn.LayerNorm(input_dim * 2),
|
| 77 |
+
nn.Tanh(),
|
| 78 |
+
nn.Linear(input_dim * 2, hash_output_bits),
|
| 79 |
+
nn.Tanh() # Output in [-1, 1]
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
self.hebbian_weights = nn.Parameter(torch.ones(hash_output_bits) * 0.1)
|
| 83 |
+
self.plasticity_rate = nn.Parameter(torch.tensor(learning_rate))
|
| 84 |
+
|
| 85 |
+
self.register_buffer('activity_history', torch.zeros(100, hash_output_bits))
|
| 86 |
+
self.register_buffer('history_pointer', torch.tensor(0, dtype=torch.long))
|
| 87 |
+
|
| 88 |
+
self.coactivation_matrix = nn.Parameter(torch.eye(hash_output_bits) * 0.1)
|
| 89 |
+
|
| 90 |
+
self.activation_threshold = nn.Parameter(torch.zeros(hash_output_bits))
|
| 91 |
+
|
| 92 |
+
def compute_hash_activation(self, item_vector):
|
| 93 |
+
if item_vector.dim() == 1:
|
| 94 |
+
item_vector = item_vector.unsqueeze(0)
|
| 95 |
+
item_vector = item_vector.to(next(self.hash_network.parameters()).device, dtype=torch.float32)
|
| 96 |
+
|
| 97 |
+
base_hash = self.hash_network(item_vector).squeeze(0)
|
| 98 |
+
|
| 99 |
+
hebbian_modulation = torch.tanh(self.hebbian_weights)
|
| 100 |
+
modulated_hash = base_hash * hebbian_modulation
|
| 101 |
+
|
| 102 |
+
thresholded = modulated_hash - self.activation_threshold
|
| 103 |
+
|
| 104 |
+
hash_probs = torch.sigmoid(thresholded * 10.0) # Sharp sigmoid
|
| 105 |
+
|
| 106 |
+
return hash_probs, modulated_hash
|
| 107 |
+
|
| 108 |
+
def get_hash_bits(self, item_vector, deterministic=False):
|
| 109 |
+
hash_probs, _ = self.compute_hash_activation(item_vector)
|
| 110 |
+
|
| 111 |
+
if deterministic:
|
| 112 |
+
hash_bits = (hash_probs > 0.5).float()
|
| 113 |
+
else:
|
| 114 |
+
hash_bits = torch.bernoulli(hash_probs)
|
| 115 |
+
|
| 116 |
+
return hash_bits
|
| 117 |
+
|
| 118 |
+
def hebbian_update(self, item_vector, co_occurring_items=None):
|
| 119 |
+
hash_probs, modulated_hash = self.compute_hash_activation(item_vector)
|
| 120 |
+
|
| 121 |
+
with torch.no_grad():
|
| 122 |
+
ptr = int(self.history_pointer.item())
|
| 123 |
+
self.activity_history[ptr % self.activity_history.size(0)].copy_(hash_probs.detach())
|
| 124 |
+
self.history_pointer.add_(1)
|
| 125 |
+
self.history_pointer.remainder_(self.activity_history.size(0))
|
| 126 |
+
|
| 127 |
+
plasticity_rate = torch.clamp(self.plasticity_rate, 0.001, 0.1)
|
| 128 |
+
|
| 129 |
+
activity_strength = torch.abs(modulated_hash)
|
| 130 |
+
hebbian_delta = plasticity_rate * activity_strength * hash_probs
|
| 131 |
+
|
| 132 |
+
with torch.no_grad():
|
| 133 |
+
self.hebbian_weights.data.add_(hebbian_delta * 0.05)
|
| 134 |
+
self.hebbian_weights.data.clamp_(-2.0, 2.0)
|
| 135 |
+
|
| 136 |
+
if co_occurring_items is not None:
|
| 137 |
+
self.update_coactivation_matrix(hash_probs, co_occurring_items)
|
| 138 |
+
|
| 139 |
+
return hash_probs
|
| 140 |
+
|
| 141 |
+
def update_coactivation_matrix(self, current_activation, co_occurring_items):
|
| 142 |
+
with torch.no_grad():
|
| 143 |
+
for co_item in co_occurring_items:
|
| 144 |
+
co_item_vector = item_to_vector(co_item, self.input_dim).to(current_activation.device)
|
| 145 |
+
co_activation, _ = self.compute_hash_activation(co_item_vector)
|
| 146 |
+
|
| 147 |
+
coactivation_update = torch.outer(current_activation, co_activation)
|
| 148 |
+
|
| 149 |
+
learning_rate = 0.01
|
| 150 |
+
self.coactivation_matrix.data.add_(learning_rate * coactivation_update)
|
| 151 |
+
self.coactivation_matrix.data.clamp_(-1.0, 1.0)
|
| 152 |
+
|
| 153 |
+
def get_similar_patterns(self, item_vector, top_k=5):
|
| 154 |
+
current_probs, _ = self.compute_hash_activation(item_vector)
|
| 155 |
+
|
| 156 |
+
similarities = []
|
| 157 |
+
for i in range(self.activity_history.shape[0]):
|
| 158 |
+
hist_pattern = self.activity_history[i]
|
| 159 |
+
if torch.sum(hist_pattern) > 0: # Non-zero pattern
|
| 160 |
+
similarity = safe_cosine_similarity(
|
| 161 |
+
current_probs.unsqueeze(0),
|
| 162 |
+
hist_pattern.unsqueeze(0)
|
| 163 |
+
).squeeze()
|
| 164 |
+
similarities.append((i, float(similarity.item())))
|
| 165 |
+
|
| 166 |
+
similarities.sort(key=lambda x: x[1], reverse=True)
|
| 167 |
+
|
| 168 |
+
return similarities[:top_k]
|
| 169 |
+
|
| 170 |
+
def apply_forgetting(self, forget_rate=0.99):
|
| 171 |
+
with torch.no_grad():
|
| 172 |
+
self.hebbian_weights.data.mul_(forget_rate)
|
| 173 |
+
self.coactivation_matrix.data.mul_(forget_rate)
|
| 174 |
+
|
| 175 |
+
###########################################################################################################################################
|
| 176 |
+
################################################- - - HEBBIAN BLOOM FILTER - - -#######################################################
|
| 177 |
+
|
| 178 |
+
class HebbianBloomFilter(nn.Module):
|
| 179 |
+
def __init__(self, capacity=10000, error_rate=0.01, vector_dim=64, num_hash_functions=8):
|
| 180 |
+
super().__init__()
|
| 181 |
+
self.capacity = capacity
|
| 182 |
+
self.error_rate = error_rate
|
| 183 |
+
self.vector_dim = vector_dim
|
| 184 |
+
self.num_hash_functions = num_hash_functions
|
| 185 |
+
|
| 186 |
+
self.bit_array_size = self._calculate_bit_array_size(capacity, error_rate)
|
| 187 |
+
|
| 188 |
+
self.hash_functions = nn.ModuleList([
|
| 189 |
+
LearnableHashFunction(vector_dim, hash_output_bits=32)
|
| 190 |
+
for _ in range(num_hash_functions)
|
| 191 |
+
])
|
| 192 |
+
|
| 193 |
+
self.register_buffer('bit_array', torch.zeros(self.bit_array_size))
|
| 194 |
+
self.register_buffer('confidence_array', torch.zeros(self.bit_array_size))
|
| 195 |
+
|
| 196 |
+
self.stored_items = {}
|
| 197 |
+
self.item_vectors = {}
|
| 198 |
+
|
| 199 |
+
self.register_buffer('access_counts', torch.zeros(self.bit_array_size))
|
| 200 |
+
self.register_buffer('total_items_added', torch.tensor(0, dtype=torch.long))
|
| 201 |
+
|
| 202 |
+
self.association_strength = nn.Parameter(torch.tensor(0.1))
|
| 203 |
+
self.confidence_threshold = nn.Parameter(torch.tensor(0.5))
|
| 204 |
+
|
| 205 |
+
self.decay_rate = nn.Parameter(torch.tensor(0.999))
|
| 206 |
+
|
| 207 |
+
def _calculate_bit_array_size(self, capacity, error_rate):
|
| 208 |
+
return int(-capacity * math.log(error_rate) / (math.log(2) ** 2))
|
| 209 |
+
|
| 210 |
+
def _get_bit_indices(self, item_vector):
|
| 211 |
+
indices = []
|
| 212 |
+
confidences = []
|
| 213 |
+
|
| 214 |
+
for hash_func in self.hash_functions:
|
| 215 |
+
hash_bits = hash_func.get_hash_bits(item_vector, deterministic=True)
|
| 216 |
+
|
| 217 |
+
weights = (1 << torch.arange(len(hash_bits), device=hash_bits.device, dtype=torch.int64))
|
| 218 |
+
bit_index = int((hash_bits.to(dtype=torch.int64) * weights).sum().item())
|
| 219 |
+
bit_index = bit_index % self.bit_array_size
|
| 220 |
+
|
| 221 |
+
hash_probs, _ = hash_func.compute_hash_activation(item_vector)
|
| 222 |
+
confidence = torch.mean(torch.abs(hash_probs - 0.5)) * 2 # Distance from uncertain (0.5)
|
| 223 |
+
|
| 224 |
+
indices.append(bit_index)
|
| 225 |
+
confidences.append(confidence.item())
|
| 226 |
+
|
| 227 |
+
return indices, confidences
|
| 228 |
+
|
| 229 |
+
def add(self, item, associated_items=None):
|
| 230 |
+
item_vector = item_to_vector(item, self.vector_dim)
|
| 231 |
+
|
| 232 |
+
item_key = str(item)
|
| 233 |
+
self.stored_items[item_key] = item
|
| 234 |
+
self.item_vectors[item_key] = item_vector
|
| 235 |
+
|
| 236 |
+
indices, confidences = self._get_bit_indices(item_vector)
|
| 237 |
+
|
| 238 |
+
with torch.no_grad():
|
| 239 |
+
for idx, conf in zip(indices, confidences):
|
| 240 |
+
self.bit_array[idx] = 1.0
|
| 241 |
+
self.confidence_array[idx] = max(float(self.confidence_array[idx].item()), conf)
|
| 242 |
+
self.access_counts[idx] += 1
|
| 243 |
+
|
| 244 |
+
for hash_func in self.hash_functions:
|
| 245 |
+
hash_func.hebbian_update(item_vector, associated_items)
|
| 246 |
+
|
| 247 |
+
with torch.no_grad():
|
| 248 |
+
self.total_items_added.add_(1)
|
| 249 |
+
|
| 250 |
+
if associated_items:
|
| 251 |
+
self._learn_associations(item, associated_items)
|
| 252 |
+
|
| 253 |
+
return indices
|
| 254 |
+
|
| 255 |
+
def _learn_associations(self, primary_item, associated_items):
|
| 256 |
+
primary_vector = item_to_vector(primary_item, self.vector_dim)
|
| 257 |
+
|
| 258 |
+
for assoc_item in associated_items:
|
| 259 |
+
assoc_vector = item_to_vector(assoc_item, self.vector_dim)
|
| 260 |
+
|
| 261 |
+
similarity = safe_cosine_similarity(
|
| 262 |
+
primary_vector.unsqueeze(0),
|
| 263 |
+
assoc_vector.unsqueeze(0)
|
| 264 |
+
).squeeze()
|
| 265 |
+
|
| 266 |
+
association_strength = torch.clamp(self.association_strength, 0.01, 1.0)
|
| 267 |
+
_ = association_strength # keep variable used to respect format
|
| 268 |
+
|
| 269 |
+
for hash_func in self.hash_functions:
|
| 270 |
+
if float(similarity.item()) > 0.5:
|
| 271 |
+
hash_func.hebbian_update(primary_vector, [assoc_item])
|
| 272 |
+
|
| 273 |
+
def query(self, item, return_confidence=False):
|
| 274 |
+
item_vector = item_to_vector(item, self.vector_dim)
|
| 275 |
+
indices, confidences = self._get_bit_indices(item_vector)
|
| 276 |
+
|
| 277 |
+
bit_checks = [self.bit_array[idx].item() > 0 for idx in indices]
|
| 278 |
+
is_member = all(bit_checks)
|
| 279 |
+
|
| 280 |
+
if return_confidence:
|
| 281 |
+
bit_confidences = [self.confidence_array[idx].item() for idx in indices]
|
| 282 |
+
hash_confidences = confidences
|
| 283 |
+
|
| 284 |
+
bit_conf = np.mean(bit_confidences) if bit_confidences else 0.0
|
| 285 |
+
hash_conf = np.mean(hash_confidences) if hash_confidences else 0.0
|
| 286 |
+
|
| 287 |
+
access_conf = np.mean([self.access_counts[idx].item() for idx in indices])
|
| 288 |
+
access_conf = min(access_conf / 10.0, 1.0) # Normalize
|
| 289 |
+
|
| 290 |
+
overall_confidence = (bit_conf + hash_conf + access_conf) / 3.0
|
| 291 |
+
|
| 292 |
+
return is_member, overall_confidence
|
| 293 |
+
|
| 294 |
+
return is_member
|
| 295 |
+
|
| 296 |
+
def find_similar_items(self, query_item, top_k=5):
|
| 297 |
+
query_vector = item_to_vector(query_item, self.vector_dim)
|
| 298 |
+
|
| 299 |
+
coact_weights = []
|
| 300 |
+
for hash_func in self.hash_functions:
|
| 301 |
+
q_act, _ = hash_func.compute_hash_activation(query_vector)
|
| 302 |
+
q_weight = torch.matmul(hash_func.coactivation_matrix.t(), q_act)
|
| 303 |
+
coact_weights.append((q_act, q_weight))
|
| 304 |
+
|
| 305 |
+
similarities = []
|
| 306 |
+
for item_key, item_vector in self.item_vectors.items():
|
| 307 |
+
base_sim = safe_cosine_similarity(
|
| 308 |
+
query_vector.unsqueeze(0),
|
| 309 |
+
item_vector.unsqueeze(0)
|
| 310 |
+
).squeeze().item()
|
| 311 |
+
|
| 312 |
+
co_sim_sum = 0.0
|
| 313 |
+
for (hash_func, (q_act, q_weight)) in zip(self.hash_functions, coact_weights):
|
| 314 |
+
i_act, _ = hash_func.compute_hash_activation(item_vector)
|
| 315 |
+
co_sim_sum += torch.dot(q_weight, i_act).item() / max(1, len(i_act))
|
| 316 |
+
co_sim = co_sim_sum / max(1, len(self.hash_functions))
|
| 317 |
+
|
| 318 |
+
alpha, beta = 0.6, 0.4
|
| 319 |
+
score = alpha * base_sim + beta * co_sim
|
| 320 |
+
similarities.append((self.stored_items[item_key], score))
|
| 321 |
+
|
| 322 |
+
similarities.sort(key=lambda x: x[1], reverse=True)
|
| 323 |
+
return similarities[:top_k]
|
| 324 |
+
|
| 325 |
+
def get_hash_statistics(self):
|
| 326 |
+
stats = {
|
| 327 |
+
'total_items': int(self.total_items_added.item()),
|
| 328 |
+
'bit_array_utilization': (self.bit_array > 0).float().mean().item(),
|
| 329 |
+
'average_confidence': self.confidence_array.mean().item(),
|
| 330 |
+
'hash_function_stats': []
|
| 331 |
+
}
|
| 332 |
+
|
| 333 |
+
for i, hash_func in enumerate(self.hash_functions):
|
| 334 |
+
hash_stats = {
|
| 335 |
+
'function_id': i,
|
| 336 |
+
'hebbian_weights_mean': hash_func.hebbian_weights.mean().item(),
|
| 337 |
+
'plasticity_rate': hash_func.plasticity_rate.item(),
|
| 338 |
+
'activation_threshold_mean': hash_func.activation_threshold.mean().item()
|
| 339 |
+
}
|
| 340 |
+
stats['hash_function_stats'].append(hash_stats)
|
| 341 |
+
|
| 342 |
+
return stats
|
| 343 |
+
|
| 344 |
+
def apply_temporal_decay(self):
|
| 345 |
+
decay_rate = torch.clamp(self.decay_rate, 0.9, 0.999)
|
| 346 |
+
|
| 347 |
+
with torch.no_grad():
|
| 348 |
+
self.confidence_array.mul_(decay_rate)
|
| 349 |
+
self.access_counts.mul_(decay_rate)
|
| 350 |
+
|
| 351 |
+
low_confidence_mask = self.confidence_array < 0.1
|
| 352 |
+
self.bit_array[low_confidence_mask] = 0.0
|
| 353 |
+
self.confidence_array[low_confidence_mask] = 0.0
|
| 354 |
+
|
| 355 |
+
for hash_func in self.hash_functions:
|
| 356 |
+
hash_func.apply_forgetting(float(decay_rate.item()))
|
| 357 |
+
|
| 358 |
+
def optimize_structure(self):
|
| 359 |
+
with torch.no_grad():
|
| 360 |
+
high_access_ratio = (self.access_counts > self.access_counts.mean()).float().mean().item()
|
| 361 |
+
adjustment = -0.01 * high_access_ratio
|
| 362 |
+
for hash_func in self.hash_functions:
|
| 363 |
+
hash_func.activation_threshold.data.add_(adjustment)
|
| 364 |
+
hash_func.activation_threshold.data.clamp_(-1.0, 1.0)
|
| 365 |
+
|
| 366 |
+
###########################################################################################################################################
|
| 367 |
+
############################################- - - ASSOCIATIVE HEBBIAN BLOOM SYSTEM - - -###############################################
|
| 368 |
+
|
| 369 |
+
class AssociativeHebbianBloomSystem(nn.Module):
|
| 370 |
+
def __init__(self, capacity=10000, vector_dim=64, num_filters=3):
|
| 371 |
+
super().__init__()
|
| 372 |
+
self.capacity = capacity
|
| 373 |
+
self.vector_dim = vector_dim
|
| 374 |
+
self.num_filters = num_filters
|
| 375 |
+
|
| 376 |
+
self.filters = nn.ModuleList([
|
| 377 |
+
HebbianBloomFilter(
|
| 378 |
+
capacity=capacity // num_filters,
|
| 379 |
+
error_rate=0.01,
|
| 380 |
+
vector_dim=vector_dim,
|
| 381 |
+
num_hash_functions=6
|
| 382 |
+
) for _ in range(num_filters)
|
| 383 |
+
])
|
| 384 |
+
|
| 385 |
+
self.filter_selector = nn.Sequential(
|
| 386 |
+
nn.Linear(vector_dim, vector_dim // 2),
|
| 387 |
+
nn.ReLU(),
|
| 388 |
+
nn.Linear(vector_dim // 2, num_filters),
|
| 389 |
+
nn.Softmax(dim=-1)
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
self.global_association_net = nn.Sequential(
|
| 393 |
+
nn.Linear(vector_dim * 2, vector_dim),
|
| 394 |
+
nn.Tanh(),
|
| 395 |
+
nn.Linear(vector_dim, 1),
|
| 396 |
+
nn.Sigmoid()
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
self.register_buffer('global_access_count', torch.tensor(0, dtype=torch.long))
|
| 400 |
+
|
| 401 |
+
def add_item(self, item, category=None, associated_items=None):
|
| 402 |
+
item_vector = item_to_vector(item, self.vector_dim)
|
| 403 |
+
|
| 404 |
+
filter_weights = self.filter_selector(item_vector.unsqueeze(0)).squeeze(0)
|
| 405 |
+
|
| 406 |
+
with torch.no_grad():
|
| 407 |
+
loads = torch.tensor([f.total_items_added.item() / max(1, f.capacity) for f in self.filters], dtype=filter_weights.dtype, device=filter_weights.device)
|
| 408 |
+
filter_weights = filter_weights - 0.1 * loads
|
| 409 |
+
|
| 410 |
+
top_k_filters = min(2, self.num_filters) # Use top 2 filters
|
| 411 |
+
_, top_indices = torch.topk(filter_weights, top_k_filters)
|
| 412 |
+
|
| 413 |
+
added_to_filters = []
|
| 414 |
+
for filter_idx in top_indices:
|
| 415 |
+
filter_obj = self.filters[filter_idx.item()]
|
| 416 |
+
indices = filter_obj.add(item, associated_items)
|
| 417 |
+
added_to_filters.append((filter_idx.item(), indices))
|
| 418 |
+
|
| 419 |
+
with torch.no_grad():
|
| 420 |
+
self.global_access_count.add_(1)
|
| 421 |
+
|
| 422 |
+
return added_to_filters
|
| 423 |
+
|
| 424 |
+
def query_item(self, item, return_detailed=False):
|
| 425 |
+
item_vector = item_to_vector(item, self.vector_dim)
|
| 426 |
+
|
| 427 |
+
results = []
|
| 428 |
+
confidences = []
|
| 429 |
+
|
| 430 |
+
for i, filter_obj in enumerate(self.filters):
|
| 431 |
+
is_member, confidence = filter_obj.query(item, return_confidence=True)
|
| 432 |
+
results.append(is_member)
|
| 433 |
+
confidences.append(confidence)
|
| 434 |
+
|
| 435 |
+
positive_votes = sum(results)
|
| 436 |
+
avg_confidence = np.mean(confidences)
|
| 437 |
+
|
| 438 |
+
ensemble_decision = positive_votes > len(self.filters) // 2
|
| 439 |
+
|
| 440 |
+
if return_detailed:
|
| 441 |
+
return {
|
| 442 |
+
'is_member': ensemble_decision,
|
| 443 |
+
'confidence': avg_confidence,
|
| 444 |
+
'individual_results': list(zip(results, confidences)),
|
| 445 |
+
'positive_votes': positive_votes,
|
| 446 |
+
'total_filters': len(self.filters)
|
| 447 |
+
}
|
| 448 |
+
|
| 449 |
+
return ensemble_decision
|
| 450 |
+
|
| 451 |
+
def find_associations(self, query_item, top_k=10):
|
| 452 |
+
all_similarities = []
|
| 453 |
+
|
| 454 |
+
for filter_obj in self.filters:
|
| 455 |
+
similarities = filter_obj.find_similar_items(query_item, top_k)
|
| 456 |
+
all_similarities.extend(similarities)
|
| 457 |
+
|
| 458 |
+
unique_items = {}
|
| 459 |
+
for item, similarity in all_similarities:
|
| 460 |
+
item_key = str(item)
|
| 461 |
+
if item_key in unique_items:
|
| 462 |
+
unique_items[item_key] = max(unique_items[item_key], similarity)
|
| 463 |
+
else:
|
| 464 |
+
unique_items[item_key] = similarity
|
| 465 |
+
|
| 466 |
+
ranked_items = sorted(unique_items.items(), key=lambda x: x[1], reverse=True)
|
| 467 |
+
|
| 468 |
+
return ranked_items[:top_k]
|
| 469 |
+
|
| 470 |
+
def system_maintenance(self):
|
| 471 |
+
for filter_obj in self.filters:
|
| 472 |
+
filter_obj.apply_temporal_decay()
|
| 473 |
+
filter_obj.optimize_structure()
|
| 474 |
+
|
| 475 |
+
if self.global_access_count % 1000 == 0:
|
| 476 |
+
self._global_optimization()
|
| 477 |
+
|
| 478 |
+
def _global_optimization(self):
|
| 479 |
+
print("Performing global Hebbian Bloom system optimization...")
|
| 480 |
+
|
| 481 |
+
filter_utilizations = []
|
| 482 |
+
for filter_obj in self.filters:
|
| 483 |
+
stats = filter_obj.get_hash_statistics()
|
| 484 |
+
utilization = stats['bit_array_utilization']
|
| 485 |
+
filter_utilizations.append(utilization)
|
| 486 |
+
|
| 487 |
+
def get_system_statistics(self):
|
| 488 |
+
"""Get comprehensive system statistics."""
|
| 489 |
+
stats = {
|
| 490 |
+
'global_access_count': int(self.global_access_count.item()),
|
| 491 |
+
'num_filters': self.num_filters,
|
| 492 |
+
'filter_statistics': []
|
| 493 |
+
}
|
| 494 |
+
|
| 495 |
+
for i, filter_obj in enumerate(self.filters):
|
| 496 |
+
filter_stats = filter_obj.get_hash_statistics()
|
| 497 |
+
filter_stats['filter_id'] = i
|
| 498 |
+
stats['filter_statistics'].append(filter_stats)
|
| 499 |
+
|
| 500 |
+
return stats
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
###########################################################################################################################################
|
hebbian_bloom_docs.py
ADDED
|
@@ -0,0 +1,888 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
###########################################################################################################################################
|
| 2 |
+
#||- - - |6.25.2025| - - - || HEBBIAN BLOOM || - - - | 1990two | - - -||#
|
| 3 |
+
###########################################################################################################################################
|
| 4 |
+
"""
|
| 5 |
+
Mathematical Foundation & Conceptual Documentation
|
| 6 |
+
-------------------------------------------------
|
| 7 |
+
|
| 8 |
+
CORE PRINCIPLE:
|
| 9 |
+
Combines Hebbian learning ("neurons that fire together, wire together") with
|
| 10 |
+
Bloom filter probabilistic membership testing to create self-organizing
|
| 11 |
+
associative memory systems that adapt based on usage patterns.
|
| 12 |
+
|
| 13 |
+
MATHEMATICAL FOUNDATION:
|
| 14 |
+
=======================
|
| 15 |
+
|
| 16 |
+
1. HEBBIAN LEARNING RULE:
|
| 17 |
+
Δw_ij = η * a_i * a_j
|
| 18 |
+
|
| 19 |
+
Where:
|
| 20 |
+
- w_ij: connection strength between neurons i and j
|
| 21 |
+
- η: learning rate (plasticity parameter)
|
| 22 |
+
- a_i, a_j: activation levels of neurons i and j
|
| 23 |
+
|
| 24 |
+
In our context:
|
| 25 |
+
- Strengthens hash function weights for co-occurring patterns
|
| 26 |
+
- Adapts activation thresholds based on usage frequency
|
| 27 |
+
- Creates associative links between related items
|
| 28 |
+
|
| 29 |
+
2. BLOOM FILTER MATHEMATICS:
|
| 30 |
+
|
| 31 |
+
Optimal bit array size: m = -n * ln(p) / (ln(2))²
|
| 32 |
+
Optimal hash functions: k = (m/n) * ln(2)
|
| 33 |
+
|
| 34 |
+
Where:
|
| 35 |
+
- n: expected number of items
|
| 36 |
+
- p: desired false positive rate
|
| 37 |
+
- m: bit array size
|
| 38 |
+
- k: number of hash functions
|
| 39 |
+
|
| 40 |
+
False positive probability: P_fp ≈ (1 - e^(-kn/m))^k
|
| 41 |
+
|
| 42 |
+
3. CONFIDENCE ESTIMATION:
|
| 43 |
+
|
| 44 |
+
C_total = (C_bit + C_hash + C_access) / 3
|
| 45 |
+
|
| 46 |
+
Where:
|
| 47 |
+
- C_bit: confidence from bit array activation strength
|
| 48 |
+
- C_hash: confidence from hash activation patterns
|
| 49 |
+
- C_access: confidence from historical access frequency
|
| 50 |
+
|
| 51 |
+
4. TEMPORAL DECAY:
|
| 52 |
+
|
| 53 |
+
w_t+1 = γ * w_t
|
| 54 |
+
|
| 55 |
+
Where γ ∈ [0.9, 0.999] is the decay rate, implementing forgetting.
|
| 56 |
+
|
| 57 |
+
CONCEPTUAL REASONING:
|
| 58 |
+
====================
|
| 59 |
+
|
| 60 |
+
WHY HEBBIAN + BLOOM FILTERS?
|
| 61 |
+
- Traditional Bloom filters use static hash functions
|
| 62 |
+
- Real-world data has temporal and associative patterns
|
| 63 |
+
- Hebbian learning enables dynamic adaptation to these patterns
|
| 64 |
+
- Results in more efficient memory utilization and better retrieval
|
| 65 |
+
|
| 66 |
+
KEY INNOVATIONS:
|
| 67 |
+
1. **Learnable Hash Functions**: Neural networks that adapt their mappings
|
| 68 |
+
2. **Associative Strengthening**: Related items develop similar hash patterns
|
| 69 |
+
3. **Confidence Estimation**: Multi-factor confidence scoring
|
| 70 |
+
4. **Temporal Adaptation**: Gradual forgetting prevents overfitting
|
| 71 |
+
5. **Ensemble Filtering**: Multiple filters with voting for robustness
|
| 72 |
+
|
| 73 |
+
APPLICATIONS:
|
| 74 |
+
- Caching systems that learn access patterns
|
| 75 |
+
- Recommendation engines with temporal adaptation
|
| 76 |
+
- Memory systems for neural architectures
|
| 77 |
+
- Similarity search with learned associations
|
| 78 |
+
|
| 79 |
+
COMPLEXITY ANALYSIS:
|
| 80 |
+
- Space: O(m + n*d) where m=bit array size, n=items, d=vector dimension
|
| 81 |
+
- Time: O(k*d) per operation where k=hash functions
|
| 82 |
+
- Learning: O(d²) for co-activation matrix updates
|
| 83 |
+
"""
|
| 84 |
+
|
| 85 |
+
import torch
|
| 86 |
+
import torch.nn as nn
|
| 87 |
+
import torch.nn.functional as F
|
| 88 |
+
import numpy as np
|
| 89 |
+
import math
|
| 90 |
+
import hashlib
|
| 91 |
+
from collections import defaultdict, deque
|
| 92 |
+
from typing import List, Dict, Tuple, Optional, Union
|
| 93 |
+
|
| 94 |
+
SAFE_MIN = -1e6
|
| 95 |
+
SAFE_MAX = 1e6
|
| 96 |
+
EPS = 1e-8
|
| 97 |
+
|
| 98 |
+
#||- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 𓅸 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -||#
|
| 99 |
+
|
| 100 |
+
def make_safe(tensor, min_val=SAFE_MIN, max_val=SAFE_MAX):
|
| 101 |
+
tensor = torch.where(torch.isnan(tensor), torch.tensor(0.0, device=tensor.device, dtype=tensor.dtype), tensor)
|
| 102 |
+
tensor = torch.where(torch.isinf(tensor), torch.tensor(max_val, device=tensor.device, dtype=tensor.dtype), tensor)
|
| 103 |
+
return torch.clamp(tensor, min_val, max_val)
|
| 104 |
+
|
| 105 |
+
def safe_cosine_similarity(a, b, dim=-1, eps=EPS):
|
| 106 |
+
if a.dtype != torch.float32:
|
| 107 |
+
a = a.float()
|
| 108 |
+
if b.dtype != torch.float32:
|
| 109 |
+
b = b.float()
|
| 110 |
+
a_norm = torch.norm(a, dim=dim, keepdim=True).clamp(min=eps)
|
| 111 |
+
b_norm = torch.norm(b, dim=dim, keepdim=True).clamp(min=eps)
|
| 112 |
+
return torch.sum(a * b, dim=dim, keepdim=True) / (a_norm * b_norm)
|
| 113 |
+
|
| 114 |
+
def item_to_vector(item, vector_dim=64):
|
| 115 |
+
"""Convert arbitrary item to fixed-size vector representation.
|
| 116 |
+
|
| 117 |
+
Uses different encoding strategies:
|
| 118 |
+
- Strings: MD5 hash-based encoding
|
| 119 |
+
- Numbers: Sinusoidal positional encoding
|
| 120 |
+
- Tensors: Flattening with padding/truncation
|
| 121 |
+
- Other: Deterministic hash-based random vector
|
| 122 |
+
"""
|
| 123 |
+
if isinstance(item, str):
|
| 124 |
+
# String to vector via hashing
|
| 125 |
+
hash_obj = hashlib.md5(item.encode())
|
| 126 |
+
hash_bytes = hash_obj.digest()
|
| 127 |
+
# Convert bytes to float vector
|
| 128 |
+
vector = torch.tensor([b / 255.0 for b in hash_bytes], dtype=torch.float32)
|
| 129 |
+
# Pad or truncate to desired dimension
|
| 130 |
+
if len(vector) < vector_dim:
|
| 131 |
+
padding = torch.zeros(vector_dim - len(vector), dtype=torch.float32)
|
| 132 |
+
vector = torch.cat([vector, padding])
|
| 133 |
+
else:
|
| 134 |
+
vector = vector[:vector_dim]
|
| 135 |
+
elif isinstance(item, (int, float)):
|
| 136 |
+
# Numeric to vector via sinusoidal encoding
|
| 137 |
+
vector = torch.zeros(vector_dim, dtype=torch.float32)
|
| 138 |
+
for i in range(vector_dim // 2):
|
| 139 |
+
freq = 10000 ** (-2 * i / vector_dim)
|
| 140 |
+
vector[2*i] = math.sin(item * freq)
|
| 141 |
+
vector[2*i + 1] = math.cos(item * freq)
|
| 142 |
+
elif torch.is_tensor(item):
|
| 143 |
+
# Tensor to vector via projection
|
| 144 |
+
vector = item.flatten().float()
|
| 145 |
+
if len(vector) < vector_dim:
|
| 146 |
+
padding = torch.zeros(vector_dim - len(vector), dtype=torch.float32, device=vector.device)
|
| 147 |
+
vector = torch.cat([vector, padding])
|
| 148 |
+
else:
|
| 149 |
+
vector = vector[:vector_dim]
|
| 150 |
+
else:
|
| 151 |
+
# Default: random stable vector based on hash (no global RNG side-effects)
|
| 152 |
+
hash_val = hash(str(item)) % (2**31)
|
| 153 |
+
gen = torch.Generator(device='cpu')
|
| 154 |
+
gen.manual_seed(hash_val)
|
| 155 |
+
vector = torch.randn(vector_dim, generator=gen, dtype=torch.float32)
|
| 156 |
+
|
| 157 |
+
return make_safe(vector)
|
| 158 |
+
|
| 159 |
+
###########################################################################################################################################
|
| 160 |
+
###############################################- - - LEARNABLE HASH FUNCTION - - -#####################################################
|
| 161 |
+
|
| 162 |
+
class LearnableHashFunction(nn.Module):
|
| 163 |
+
"""Neural hash function with Hebbian plasticity.
|
| 164 |
+
|
| 165 |
+
Implements learnable hash functions that adapt through Hebbian learning,
|
| 166 |
+
strengthening patterns that co-occur and developing associative mappings.
|
| 167 |
+
|
| 168 |
+
Mathematical Details:
|
| 169 |
+
- Base hash: h = tanh(W2 * tanh(W1 * x + b1) + b2)
|
| 170 |
+
- Hebbian modulation: h_mod = h * tanh(w_hebbian)
|
| 171 |
+
- Threshold adaptation: h_thresh = h_mod - θ
|
| 172 |
+
- Binary conversion: p = sigmoid(5 * h_thresh)
|
| 173 |
+
"""
|
| 174 |
+
def __init__(self, input_dim, hash_output_bits=32, learning_rate=0.01):
|
| 175 |
+
super().__init__()
|
| 176 |
+
self.input_dim = input_dim
|
| 177 |
+
self.hash_output_bits = hash_output_bits
|
| 178 |
+
self.learning_rate = learning_rate
|
| 179 |
+
|
| 180 |
+
# Neural hash function
|
| 181 |
+
self.hash_network = nn.Sequential(
|
| 182 |
+
nn.Linear(input_dim, input_dim * 2),
|
| 183 |
+
nn.LayerNorm(input_dim * 2),
|
| 184 |
+
nn.Tanh(),
|
| 185 |
+
nn.Linear(input_dim * 2, hash_output_bits),
|
| 186 |
+
nn.Tanh() # Output in [-1, 1]
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
# Hebbian plasticity parameters
|
| 190 |
+
self.hebbian_weights = nn.Parameter(torch.ones(hash_output_bits) * 0.1)
|
| 191 |
+
self.plasticity_rate = nn.Parameter(torch.tensor(learning_rate))
|
| 192 |
+
|
| 193 |
+
# Activity history for Hebbian learning
|
| 194 |
+
self.register_buffer('activity_history', torch.zeros(100, hash_output_bits))
|
| 195 |
+
self.register_buffer('history_pointer', torch.tensor(0, dtype=torch.long))
|
| 196 |
+
|
| 197 |
+
# Co-activation tracking
|
| 198 |
+
self.coactivation_matrix = nn.Parameter(torch.eye(hash_output_bits) * 0.1)
|
| 199 |
+
|
| 200 |
+
# Adaptive threshold
|
| 201 |
+
self.activation_threshold = nn.Parameter(torch.zeros(hash_output_bits))
|
| 202 |
+
|
| 203 |
+
def compute_hash_activation(self, item_vector):
|
| 204 |
+
"""Compute hash activation pattern for an item."""
|
| 205 |
+
# Ensure correct shape/dtype/device
|
| 206 |
+
if item_vector.dim() == 1:
|
| 207 |
+
item_vector = item_vector.unsqueeze(0)
|
| 208 |
+
item_vector = item_vector.to(next(self.hash_network.parameters()).device, dtype=torch.float32)
|
| 209 |
+
|
| 210 |
+
# Base neural hash
|
| 211 |
+
base_hash = self.hash_network(item_vector).squeeze(0)
|
| 212 |
+
|
| 213 |
+
# Apply Hebbian modulation
|
| 214 |
+
hebbian_modulation = torch.tanh(self.hebbian_weights)
|
| 215 |
+
modulated_hash = base_hash * hebbian_modulation
|
| 216 |
+
|
| 217 |
+
# Apply adaptive threshold
|
| 218 |
+
thresholded = modulated_hash - self.activation_threshold
|
| 219 |
+
|
| 220 |
+
# Convert to binary pattern (probabilistic)
|
| 221 |
+
hash_probs = torch.sigmoid(thresholded * 10.0) # Sharp sigmoid
|
| 222 |
+
|
| 223 |
+
return hash_probs, modulated_hash
|
| 224 |
+
|
| 225 |
+
def get_hash_bits(self, item_vector, deterministic=False):
|
| 226 |
+
"""Get binary hash bits for an item."""
|
| 227 |
+
hash_probs, _ = self.compute_hash_activation(item_vector)
|
| 228 |
+
|
| 229 |
+
if deterministic:
|
| 230 |
+
hash_bits = (hash_probs > 0.5).float()
|
| 231 |
+
else:
|
| 232 |
+
hash_bits = torch.bernoulli(hash_probs)
|
| 233 |
+
|
| 234 |
+
return hash_bits
|
| 235 |
+
|
| 236 |
+
def hebbian_update(self, item_vector, co_occurring_items=None):
|
| 237 |
+
"""Apply Hebbian learning rule: Δw = η * pre * post.
|
| 238 |
+
|
| 239 |
+
Strengthens connections between co-activated hash bits and updates
|
| 240 |
+
the co-activation matrix for associative learning.
|
| 241 |
+
"""
|
| 242 |
+
hash_probs, modulated_hash = self.compute_hash_activation(item_vector)
|
| 243 |
+
|
| 244 |
+
# Store activity in history
|
| 245 |
+
with torch.no_grad():
|
| 246 |
+
ptr = int(self.history_pointer.item())
|
| 247 |
+
self.activity_history[ptr % self.activity_history.size(0)].copy_(hash_probs.detach())
|
| 248 |
+
self.history_pointer.add_(1)
|
| 249 |
+
self.history_pointer.remainder_(self.activity_history.size(0))
|
| 250 |
+
|
| 251 |
+
# Hebbian weight update: strengthen active bits
|
| 252 |
+
plasticity_rate = torch.clamp(self.plasticity_rate, 0.001, 0.1)
|
| 253 |
+
|
| 254 |
+
# Basic Hebbian rule: Δw = η * pre * post
|
| 255 |
+
activity_strength = torch.abs(modulated_hash)
|
| 256 |
+
hebbian_delta = plasticity_rate * activity_strength * hash_probs
|
| 257 |
+
|
| 258 |
+
# Update Hebbian weights
|
| 259 |
+
with torch.no_grad():
|
| 260 |
+
self.hebbian_weights.data.add_(hebbian_delta * 0.05)
|
| 261 |
+
self.hebbian_weights.data.clamp_(-2.0, 2.0)
|
| 262 |
+
|
| 263 |
+
# Co-activation matrix update if multiple items provided
|
| 264 |
+
if co_occurring_items is not None:
|
| 265 |
+
self.update_coactivation_matrix(hash_probs, co_occurring_items)
|
| 266 |
+
|
| 267 |
+
return hash_probs
|
| 268 |
+
|
| 269 |
+
def update_coactivation_matrix(self, current_activation, co_occurring_items):
|
| 270 |
+
"""Update co-activation matrix based on items that occur together."""
|
| 271 |
+
with torch.no_grad():
|
| 272 |
+
for co_item in co_occurring_items:
|
| 273 |
+
co_item_vector = item_to_vector(co_item, self.input_dim).to(current_activation.device)
|
| 274 |
+
co_activation, _ = self.compute_hash_activation(co_item_vector)
|
| 275 |
+
|
| 276 |
+
# Outer product for co-activation strengthening
|
| 277 |
+
coactivation_update = torch.outer(current_activation, co_activation)
|
| 278 |
+
|
| 279 |
+
# Update co-activation matrix
|
| 280 |
+
learning_rate = 0.01
|
| 281 |
+
self.coactivation_matrix.data.add_(learning_rate * coactivation_update)
|
| 282 |
+
self.coactivation_matrix.data.clamp_(-1.0, 1.0)
|
| 283 |
+
|
| 284 |
+
def get_similar_patterns(self, item_vector, top_k=5):
|
| 285 |
+
"""Find historically similar activation patterns."""
|
| 286 |
+
current_probs, _ = self.compute_hash_activation(item_vector)
|
| 287 |
+
|
| 288 |
+
# Compare with history
|
| 289 |
+
similarities = []
|
| 290 |
+
for i in range(self.activity_history.shape[0]):
|
| 291 |
+
hist_pattern = self.activity_history[i]
|
| 292 |
+
if torch.sum(hist_pattern) > 0: # Non-zero pattern
|
| 293 |
+
similarity = safe_cosine_similarity(
|
| 294 |
+
current_probs.unsqueeze(0),
|
| 295 |
+
hist_pattern.unsqueeze(0)
|
| 296 |
+
).squeeze()
|
| 297 |
+
similarities.append((i, float(similarity.item())))
|
| 298 |
+
|
| 299 |
+
# Sort by similarity
|
| 300 |
+
similarities.sort(key=lambda x: x[1], reverse=True)
|
| 301 |
+
|
| 302 |
+
return similarities[:top_k]
|
| 303 |
+
|
| 304 |
+
def apply_forgetting(self, forget_rate=0.99):
|
| 305 |
+
"""Apply gradual forgetting to prevent overfitting."""
|
| 306 |
+
with torch.no_grad():
|
| 307 |
+
self.hebbian_weights.data.mul_(forget_rate)
|
| 308 |
+
self.coactivation_matrix.data.mul_(forget_rate)
|
| 309 |
+
|
| 310 |
+
###########################################################################################################################################
|
| 311 |
+
################################################- - - HEBBIAN BLOOM FILTER - - -#######################################################
|
| 312 |
+
|
| 313 |
+
class HebbianBloomFilter(nn.Module):
|
| 314 |
+
"""Probabilistic set membership filter with Hebbian learning.
|
| 315 |
+
|
| 316 |
+
Combines traditional Bloom filter efficiency with adaptive hash functions
|
| 317 |
+
that learn from usage patterns and develop associative mappings.
|
| 318 |
+
|
| 319 |
+
Key Features:
|
| 320 |
+
- Learnable hash functions with neural plasticity
|
| 321 |
+
- Confidence-based membership testing
|
| 322 |
+
- Associative learning between related items
|
| 323 |
+
- Temporal decay for forgetting old patterns
|
| 324 |
+
"""
|
| 325 |
+
def __init__(self, capacity=10000, error_rate=0.01, vector_dim=64, num_hash_functions=8):
|
| 326 |
+
super().__init__()
|
| 327 |
+
self.capacity = capacity
|
| 328 |
+
self.error_rate = error_rate
|
| 329 |
+
self.vector_dim = vector_dim
|
| 330 |
+
self.num_hash_functions = num_hash_functions
|
| 331 |
+
|
| 332 |
+
# Calculate optimal bit array size
|
| 333 |
+
self.bit_array_size = self._calculate_bit_array_size(capacity, error_rate)
|
| 334 |
+
|
| 335 |
+
# Learnable hash functions
|
| 336 |
+
self.hash_functions = nn.ModuleList([
|
| 337 |
+
LearnableHashFunction(vector_dim, hash_output_bits=32)
|
| 338 |
+
for _ in range(num_hash_functions)
|
| 339 |
+
])
|
| 340 |
+
|
| 341 |
+
# Bit array with confidence scores (not just binary)
|
| 342 |
+
self.register_buffer('bit_array', torch.zeros(self.bit_array_size))
|
| 343 |
+
self.register_buffer('confidence_array', torch.zeros(self.bit_array_size))
|
| 344 |
+
|
| 345 |
+
# Item storage for association learning
|
| 346 |
+
self.stored_items = {}
|
| 347 |
+
self.item_vectors = {}
|
| 348 |
+
|
| 349 |
+
# Usage statistics
|
| 350 |
+
self.register_buffer('access_counts', torch.zeros(self.bit_array_size))
|
| 351 |
+
self.register_buffer('total_items_added', torch.tensor(0, dtype=torch.long))
|
| 352 |
+
|
| 353 |
+
# Associative learning parameters
|
| 354 |
+
self.association_strength = nn.Parameter(torch.tensor(0.1))
|
| 355 |
+
self.confidence_threshold = nn.Parameter(torch.tensor(0.5))
|
| 356 |
+
|
| 357 |
+
# Temporal decay for forgetting
|
| 358 |
+
self.decay_rate = nn.Parameter(torch.tensor(0.999))
|
| 359 |
+
|
| 360 |
+
def _calculate_bit_array_size(self, capacity, error_rate):
|
| 361 |
+
"""Calculate optimal bit array size for given capacity and error rate."""
|
| 362 |
+
return int(-capacity * math.log(error_rate) / (math.log(2) ** 2))
|
| 363 |
+
|
| 364 |
+
def _get_bit_indices(self, item_vector):
|
| 365 |
+
"""Get bit indices from all hash functions for an item."""
|
| 366 |
+
indices = []
|
| 367 |
+
confidences = []
|
| 368 |
+
|
| 369 |
+
for hash_func in self.hash_functions:
|
| 370 |
+
hash_bits = hash_func.get_hash_bits(item_vector, deterministic=True)
|
| 371 |
+
|
| 372 |
+
# Convert hash bits to index in bit array using binary encoding -> integer -> modulo
|
| 373 |
+
weights = (1 << torch.arange(len(hash_bits), device=hash_bits.device, dtype=torch.int64))
|
| 374 |
+
bit_index = int((hash_bits.to(dtype=torch.int64) * weights).sum().item())
|
| 375 |
+
bit_index = bit_index % self.bit_array_size
|
| 376 |
+
|
| 377 |
+
# Compute confidence based on hash activation strength
|
| 378 |
+
hash_probs, _ = hash_func.compute_hash_activation(item_vector)
|
| 379 |
+
confidence = torch.mean(torch.abs(hash_probs - 0.5)) * 2 # Distance from uncertain (0.5)
|
| 380 |
+
|
| 381 |
+
indices.append(bit_index)
|
| 382 |
+
confidences.append(confidence.item())
|
| 383 |
+
|
| 384 |
+
return indices, confidences
|
| 385 |
+
|
| 386 |
+
def add(self, item, associated_items=None):
|
| 387 |
+
"""Add item to the Hebbian Bloom filter with optional associations.
|
| 388 |
+
|
| 389 |
+
Args:
|
| 390 |
+
item: Item to add to the filter
|
| 391 |
+
associated_items: Optional list of items to associate with this item
|
| 392 |
+
|
| 393 |
+
Returns:
|
| 394 |
+
List of bit indices that were set for this item
|
| 395 |
+
"""
|
| 396 |
+
# Convert item to vector
|
| 397 |
+
item_vector = item_to_vector(item, self.vector_dim)
|
| 398 |
+
|
| 399 |
+
# Store item information
|
| 400 |
+
item_key = str(item)
|
| 401 |
+
self.stored_items[item_key] = item
|
| 402 |
+
self.item_vectors[item_key] = item_vector
|
| 403 |
+
|
| 404 |
+
# Get bit indices and confidences
|
| 405 |
+
indices, confidences = self._get_bit_indices(item_vector)
|
| 406 |
+
|
| 407 |
+
# Update bit array and confidence array
|
| 408 |
+
with torch.no_grad():
|
| 409 |
+
for idx, conf in zip(indices, confidences):
|
| 410 |
+
self.bit_array[idx] = 1.0
|
| 411 |
+
self.confidence_array[idx] = max(float(self.confidence_array[idx].item()), conf)
|
| 412 |
+
self.access_counts[idx] += 1
|
| 413 |
+
|
| 414 |
+
# Apply Hebbian learning to hash functions
|
| 415 |
+
for hash_func in self.hash_functions:
|
| 416 |
+
hash_func.hebbian_update(item_vector, associated_items)
|
| 417 |
+
|
| 418 |
+
# Update item count
|
| 419 |
+
with torch.no_grad():
|
| 420 |
+
self.total_items_added.add_(1)
|
| 421 |
+
|
| 422 |
+
# Learn associations if provided
|
| 423 |
+
if associated_items:
|
| 424 |
+
self._learn_associations(item, associated_items)
|
| 425 |
+
|
| 426 |
+
return indices
|
| 427 |
+
|
| 428 |
+
def _learn_associations(self, primary_item, associated_items):
|
| 429 |
+
"""Learn associations between items using Hebbian principles."""
|
| 430 |
+
primary_vector = item_to_vector(primary_item, self.vector_dim)
|
| 431 |
+
|
| 432 |
+
for assoc_item in associated_items:
|
| 433 |
+
assoc_vector = item_to_vector(assoc_item, self.vector_dim)
|
| 434 |
+
|
| 435 |
+
# Compute similarity
|
| 436 |
+
similarity = safe_cosine_similarity(
|
| 437 |
+
primary_vector.unsqueeze(0),
|
| 438 |
+
assoc_vector.unsqueeze(0)
|
| 439 |
+
).squeeze()
|
| 440 |
+
|
| 441 |
+
# Strengthen hash functions based on similarity
|
| 442 |
+
association_strength = torch.clamp(self.association_strength, 0.01, 1.0)
|
| 443 |
+
_ = association_strength # keep variable used to respect format
|
| 444 |
+
|
| 445 |
+
for hash_func in self.hash_functions:
|
| 446 |
+
# If items are similar, encourage similar hash patterns
|
| 447 |
+
if float(similarity.item()) > 0.5:
|
| 448 |
+
hash_func.hebbian_update(primary_vector, [assoc_item])
|
| 449 |
+
|
| 450 |
+
def query(self, item, return_confidence=False):
|
| 451 |
+
"""Query membership with optional confidence estimation.
|
| 452 |
+
|
| 453 |
+
Args:
|
| 454 |
+
item: Item to query
|
| 455 |
+
return_confidence: Whether to return confidence score
|
| 456 |
+
|
| 457 |
+
Returns:
|
| 458 |
+
Boolean membership result, optionally with confidence score
|
| 459 |
+
"""
|
| 460 |
+
item_vector = item_to_vector(item, self.vector_dim)
|
| 461 |
+
indices, confidences = self._get_bit_indices(item_vector)
|
| 462 |
+
|
| 463 |
+
# Check if all bits are set
|
| 464 |
+
bit_checks = [self.bit_array[idx].item() > 0 for idx in indices]
|
| 465 |
+
is_member = all(bit_checks)
|
| 466 |
+
|
| 467 |
+
if return_confidence:
|
| 468 |
+
# Compute confidence based on multiple factors
|
| 469 |
+
bit_confidences = [self.confidence_array[idx].item() for idx in indices]
|
| 470 |
+
hash_confidences = confidences
|
| 471 |
+
|
| 472 |
+
# Combined confidence
|
| 473 |
+
bit_conf = np.mean(bit_confidences) if bit_confidences else 0.0
|
| 474 |
+
hash_conf = np.mean(hash_confidences) if hash_confidences else 0.0
|
| 475 |
+
|
| 476 |
+
# Access frequency confidence
|
| 477 |
+
access_conf = np.mean([self.access_counts[idx].item() for idx in indices])
|
| 478 |
+
access_conf = min(access_conf / 10.0, 1.0) # Normalize
|
| 479 |
+
|
| 480 |
+
overall_confidence = (bit_conf + hash_conf + access_conf) / 3.0
|
| 481 |
+
|
| 482 |
+
return is_member, overall_confidence
|
| 483 |
+
|
| 484 |
+
return is_member
|
| 485 |
+
|
| 486 |
+
def find_similar_items(self, query_item, top_k=5):
|
| 487 |
+
"""Find items similar to query using learned associations (vector + coactivation)."""
|
| 488 |
+
query_vector = item_to_vector(query_item, self.vector_dim)
|
| 489 |
+
|
| 490 |
+
# Precompute query activations and coactivation weights for each hash function
|
| 491 |
+
coact_weights = []
|
| 492 |
+
for hash_func in self.hash_functions:
|
| 493 |
+
q_act, _ = hash_func.compute_hash_activation(query_vector)
|
| 494 |
+
# act_q^T M act_i = dot(M^T act_q, act_i)
|
| 495 |
+
q_weight = torch.matmul(hash_func.coactivation_matrix.t(), q_act)
|
| 496 |
+
coact_weights.append((q_act, q_weight))
|
| 497 |
+
|
| 498 |
+
similarities = []
|
| 499 |
+
for item_key, item_vector in self.item_vectors.items():
|
| 500 |
+
# Base cosine similarity in item space
|
| 501 |
+
base_sim = safe_cosine_similarity(
|
| 502 |
+
query_vector.unsqueeze(0),
|
| 503 |
+
item_vector.unsqueeze(0)
|
| 504 |
+
).squeeze().item()
|
| 505 |
+
|
| 506 |
+
# Coactivation similarity averaged over hash functions
|
| 507 |
+
co_sim_sum = 0.0
|
| 508 |
+
for (hash_func, (q_act, q_weight)) in zip(self.hash_functions, coact_weights):
|
| 509 |
+
i_act, _ = hash_func.compute_hash_activation(item_vector)
|
| 510 |
+
co_sim_sum += torch.dot(q_weight, i_act).item() / max(1, len(i_act))
|
| 511 |
+
co_sim = co_sim_sum / max(1, len(self.hash_functions))
|
| 512 |
+
|
| 513 |
+
# Blend scores (alpha vector, beta coactivation)
|
| 514 |
+
alpha, beta = 0.6, 0.4
|
| 515 |
+
score = alpha * base_sim + beta * co_sim
|
| 516 |
+
similarities.append((self.stored_items[item_key], score))
|
| 517 |
+
|
| 518 |
+
similarities.sort(key=lambda x: x[1], reverse=True)
|
| 519 |
+
return similarities[:top_k]
|
| 520 |
+
|
| 521 |
+
def get_hash_statistics(self):
|
| 522 |
+
"""Get statistics about hash function learning."""
|
| 523 |
+
stats = {
|
| 524 |
+
'total_items': int(self.total_items_added.item()),
|
| 525 |
+
'bit_array_utilization': (self.bit_array > 0).float().mean().item(),
|
| 526 |
+
'average_confidence': self.confidence_array.mean().item(),
|
| 527 |
+
'hash_function_stats': []
|
| 528 |
+
}
|
| 529 |
+
|
| 530 |
+
for i, hash_func in enumerate(self.hash_functions):
|
| 531 |
+
hash_stats = {
|
| 532 |
+
'function_id': i,
|
| 533 |
+
'hebbian_weights_mean': hash_func.hebbian_weights.mean().item(),
|
| 534 |
+
'plasticity_rate': hash_func.plasticity_rate.item(),
|
| 535 |
+
'activation_threshold_mean': hash_func.activation_threshold.mean().item()
|
| 536 |
+
}
|
| 537 |
+
stats['hash_function_stats'].append(hash_stats)
|
| 538 |
+
|
| 539 |
+
return stats
|
| 540 |
+
|
| 541 |
+
def apply_temporal_decay(self):
|
| 542 |
+
"""Apply temporal decay to implement forgetting."""
|
| 543 |
+
decay_rate = torch.clamp(self.decay_rate, 0.9, 0.999)
|
| 544 |
+
|
| 545 |
+
with torch.no_grad():
|
| 546 |
+
self.confidence_array.mul_(decay_rate)
|
| 547 |
+
self.access_counts.mul_(decay_rate)
|
| 548 |
+
|
| 549 |
+
# Remove bits with very low confidence
|
| 550 |
+
low_confidence_mask = self.confidence_array < 0.1
|
| 551 |
+
self.bit_array[low_confidence_mask] = 0.0
|
| 552 |
+
self.confidence_array[low_confidence_mask] = 0.0
|
| 553 |
+
|
| 554 |
+
# Apply forgetting to hash functions
|
| 555 |
+
for hash_func in self.hash_functions:
|
| 556 |
+
hash_func.apply_forgetting(float(decay_rate.item()))
|
| 557 |
+
|
| 558 |
+
def optimize_structure(self):
|
| 559 |
+
"""Optimize the filter structure based on usage patterns."""
|
| 560 |
+
with torch.no_grad():
|
| 561 |
+
# Adjust thresholds based on access patterns (coarse global heuristic)
|
| 562 |
+
high_access_ratio = (self.access_counts > self.access_counts.mean()).float().mean().item()
|
| 563 |
+
adjustment = -0.01 * high_access_ratio
|
| 564 |
+
for hash_func in self.hash_functions:
|
| 565 |
+
hash_func.activation_threshold.data.add_(adjustment)
|
| 566 |
+
hash_func.activation_threshold.data.clamp_(-1.0, 1.0)
|
| 567 |
+
|
| 568 |
+
###########################################################################################################################################
|
| 569 |
+
############################################- - - ASSOCIATIVE HEBBIAN BLOOM SYSTEM - - -###############################################
|
| 570 |
+
|
| 571 |
+
class AssociativeHebbianBloomSystem(nn.Module):
|
| 572 |
+
"""Ensemble of Hebbian Bloom filters with meta-learning.
|
| 573 |
+
|
| 574 |
+
Combines multiple Hebbian Bloom filters with learned routing to create
|
| 575 |
+
a robust, scalable associative memory system with ensemble decision making.
|
| 576 |
+
|
| 577 |
+
Features:
|
| 578 |
+
- Multiple specialized filters with learned routing
|
| 579 |
+
- Ensemble voting for robust membership decisions
|
| 580 |
+
- Global association learning across filters
|
| 581 |
+
- Automatic system maintenance and optimization
|
| 582 |
+
"""
|
| 583 |
+
def __init__(self, capacity=10000, vector_dim=64, num_filters=3):
|
| 584 |
+
super().__init__()
|
| 585 |
+
self.capacity = capacity
|
| 586 |
+
self.vector_dim = vector_dim
|
| 587 |
+
self.num_filters = num_filters
|
| 588 |
+
|
| 589 |
+
# Multiple Hebbian Bloom filters for ensemble behavior
|
| 590 |
+
self.filters = nn.ModuleList([
|
| 591 |
+
HebbianBloomFilter(
|
| 592 |
+
capacity=capacity // num_filters,
|
| 593 |
+
error_rate=0.01,
|
| 594 |
+
vector_dim=vector_dim,
|
| 595 |
+
num_hash_functions=6
|
| 596 |
+
) for _ in range(num_filters)
|
| 597 |
+
])
|
| 598 |
+
|
| 599 |
+
# Meta-learning for filter selection
|
| 600 |
+
self.filter_selector = nn.Sequential(
|
| 601 |
+
nn.Linear(vector_dim, vector_dim // 2),
|
| 602 |
+
nn.ReLU(),
|
| 603 |
+
nn.Linear(vector_dim // 2, num_filters),
|
| 604 |
+
nn.Softmax(dim=-1)
|
| 605 |
+
)
|
| 606 |
+
|
| 607 |
+
# Global association learning
|
| 608 |
+
self.global_association_net = nn.Sequential(
|
| 609 |
+
nn.Linear(vector_dim * 2, vector_dim),
|
| 610 |
+
nn.Tanh(),
|
| 611 |
+
nn.Linear(vector_dim, 1),
|
| 612 |
+
nn.Sigmoid()
|
| 613 |
+
)
|
| 614 |
+
|
| 615 |
+
# System statistics
|
| 616 |
+
self.register_buffer('global_access_count', torch.tensor(0, dtype=torch.long))
|
| 617 |
+
|
| 618 |
+
def add_item(self, item, category=None, associated_items=None):
|
| 619 |
+
"""Add item to the most appropriate filter(s)."""
|
| 620 |
+
item_vector = item_to_vector(item, self.vector_dim)
|
| 621 |
+
|
| 622 |
+
# Determine which filter(s) to use
|
| 623 |
+
filter_weights = self.filter_selector(item_vector.unsqueeze(0)).squeeze(0)
|
| 624 |
+
|
| 625 |
+
# Light load-balancing penalty to avoid starving filters
|
| 626 |
+
with torch.no_grad():
|
| 627 |
+
loads = torch.tensor([f.total_items_added.item() / max(1, f.capacity) for f in self.filters], dtype=filter_weights.dtype, device=filter_weights.device)
|
| 628 |
+
filter_weights = filter_weights - 0.1 * loads
|
| 629 |
+
|
| 630 |
+
# Add to filters based on weights (top-k selection)
|
| 631 |
+
top_k_filters = min(2, self.num_filters) # Use top 2 filters
|
| 632 |
+
_, top_indices = torch.topk(filter_weights, top_k_filters)
|
| 633 |
+
|
| 634 |
+
added_to_filters = []
|
| 635 |
+
for filter_idx in top_indices:
|
| 636 |
+
filter_obj = self.filters[filter_idx.item()]
|
| 637 |
+
indices = filter_obj.add(item, associated_items)
|
| 638 |
+
added_to_filters.append((filter_idx.item(), indices))
|
| 639 |
+
|
| 640 |
+
# Update global statistics
|
| 641 |
+
with torch.no_grad():
|
| 642 |
+
self.global_access_count.add_(1)
|
| 643 |
+
|
| 644 |
+
return added_to_filters
|
| 645 |
+
|
| 646 |
+
def query_item(self, item, return_detailed=False):
|
| 647 |
+
"""Query item across all filters with ensemble confidence."""
|
| 648 |
+
item_vector = item_to_vector(item, self.vector_dim)
|
| 649 |
+
|
| 650 |
+
results = []
|
| 651 |
+
confidences = []
|
| 652 |
+
|
| 653 |
+
for i, filter_obj in enumerate(self.filters):
|
| 654 |
+
is_member, confidence = filter_obj.query(item, return_confidence=True)
|
| 655 |
+
results.append(is_member)
|
| 656 |
+
confidences.append(confidence)
|
| 657 |
+
|
| 658 |
+
# Ensemble decision
|
| 659 |
+
positive_votes = sum(results)
|
| 660 |
+
avg_confidence = np.mean(confidences)
|
| 661 |
+
|
| 662 |
+
# Final decision based on majority vote and confidence
|
| 663 |
+
ensemble_decision = positive_votes > len(self.filters) // 2
|
| 664 |
+
|
| 665 |
+
if return_detailed:
|
| 666 |
+
return {
|
| 667 |
+
'is_member': ensemble_decision,
|
| 668 |
+
'confidence': avg_confidence,
|
| 669 |
+
'individual_results': list(zip(results, confidences)),
|
| 670 |
+
'positive_votes': positive_votes,
|
| 671 |
+
'total_filters': len(self.filters)
|
| 672 |
+
}
|
| 673 |
+
|
| 674 |
+
return ensemble_decision
|
| 675 |
+
|
| 676 |
+
def find_associations(self, query_item, top_k=10):
|
| 677 |
+
"""Find associated items across all filters."""
|
| 678 |
+
all_similarities = []
|
| 679 |
+
|
| 680 |
+
for filter_obj in self.filters:
|
| 681 |
+
similarities = filter_obj.find_similar_items(query_item, top_k)
|
| 682 |
+
all_similarities.extend(similarities)
|
| 683 |
+
|
| 684 |
+
# Remove duplicates and re-rank
|
| 685 |
+
unique_items = {}
|
| 686 |
+
for item, similarity in all_similarities:
|
| 687 |
+
item_key = str(item)
|
| 688 |
+
if item_key in unique_items:
|
| 689 |
+
unique_items[item_key] = max(unique_items[item_key], similarity)
|
| 690 |
+
else:
|
| 691 |
+
unique_items[item_key] = similarity
|
| 692 |
+
|
| 693 |
+
# Sort by similarity
|
| 694 |
+
ranked_items = sorted(unique_items.items(), key=lambda x: x[1], reverse=True)
|
| 695 |
+
|
| 696 |
+
return ranked_items[:top_k]
|
| 697 |
+
|
| 698 |
+
def system_maintenance(self):
|
| 699 |
+
# Apply temporal decay to all filters
|
| 700 |
+
for filter_obj in self.filters:
|
| 701 |
+
filter_obj.apply_temporal_decay()
|
| 702 |
+
filter_obj.optimize_structure()
|
| 703 |
+
|
| 704 |
+
# System-level optimization every 1000 accesses
|
| 705 |
+
if self.global_access_count % 1000 == 0:
|
| 706 |
+
self._global_optimization()
|
| 707 |
+
|
| 708 |
+
def _global_optimization(self):
|
| 709 |
+
print("Performing global Hebbian Bloom system optimization...")
|
| 710 |
+
|
| 711 |
+
# Rebalance filter usage if needed
|
| 712 |
+
filter_utilizations = []
|
| 713 |
+
for filter_obj in self.filters:
|
| 714 |
+
stats = filter_obj.get_hash_statistics()
|
| 715 |
+
utilization = stats['bit_array_utilization']
|
| 716 |
+
filter_utilizations.append(utilization)
|
| 717 |
+
|
| 718 |
+
# Could implement filter rebalancing here if needed
|
| 719 |
+
|
| 720 |
+
def get_system_statistics(self):
|
| 721 |
+
stats = {
|
| 722 |
+
'global_access_count': int(self.global_access_count.item()),
|
| 723 |
+
'num_filters': self.num_filters,
|
| 724 |
+
'filter_statistics': []
|
| 725 |
+
}
|
| 726 |
+
|
| 727 |
+
for i, filter_obj in enumerate(self.filters):
|
| 728 |
+
filter_stats = filter_obj.get_hash_statistics()
|
| 729 |
+
filter_stats['filter_id'] = i
|
| 730 |
+
stats['filter_statistics'].append(filter_stats)
|
| 731 |
+
|
| 732 |
+
return stats
|
| 733 |
+
|
| 734 |
+
###########################################################################################################################################
|
| 735 |
+
####################################################- - - DEMO AND TESTING - - -#######################################################
|
| 736 |
+
|
| 737 |
+
def test_hebbian_bloom():
|
| 738 |
+
print("Testing Hebbian Bloom Filter - Self-Organizing Probabilistic Memory")
|
| 739 |
+
print("=" * 85)
|
| 740 |
+
|
| 741 |
+
# Create Hebbian Bloom Filter system
|
| 742 |
+
system = AssociativeHebbianBloomSystem(
|
| 743 |
+
capacity=1000,
|
| 744 |
+
vector_dim=32,
|
| 745 |
+
num_filters=3
|
| 746 |
+
)
|
| 747 |
+
|
| 748 |
+
print(f"Created Hebbian Bloom System:")
|
| 749 |
+
print(f" - Capacity: 1000 items")
|
| 750 |
+
print(f" - Vector dimension: 32")
|
| 751 |
+
print(f" - Number of filters: 3")
|
| 752 |
+
print(f" - Hash functions per filter: 6")
|
| 753 |
+
|
| 754 |
+
# Test with related items to demonstrate Hebbian learning
|
| 755 |
+
print("\nAdding related items to demonstrate associative learning...")
|
| 756 |
+
|
| 757 |
+
# Add some related items
|
| 758 |
+
fruits = ["apple", "banana", "orange", "grape", "strawberry"]
|
| 759 |
+
colors = ["red", "yellow", "orange", "purple", "red"]
|
| 760 |
+
|
| 761 |
+
for fruit, color in zip(fruits, colors):
|
| 762 |
+
system.add_item(fruit, associated_items=[color, "fruit"])
|
| 763 |
+
system.add_item(color, associated_items=[fruit, "color"])
|
| 764 |
+
|
| 765 |
+
# Add some numbers
|
| 766 |
+
numbers = [1, 2, 3, 4, 5]
|
| 767 |
+
for num in numbers:
|
| 768 |
+
system.add_item(num, associated_items=["number", "digit"])
|
| 769 |
+
|
| 770 |
+
print(f"Added {len(fruits)} fruits with colors and {len(numbers)} numbers")
|
| 771 |
+
|
| 772 |
+
# Test membership queries
|
| 773 |
+
print("\nTesting membership queries...")
|
| 774 |
+
|
| 775 |
+
test_items = ["apple", "banana", "pineapple", 1, 3, 7, "red", "blue"]
|
| 776 |
+
|
| 777 |
+
for item in test_items:
|
| 778 |
+
result = system.query_item(item, return_detailed=True)
|
| 779 |
+
print(f" '{item}': {result['is_member']} (confidence: {result['confidence']:.3f}, votes: {result['positive_votes']}/{result['total_filters']})")
|
| 780 |
+
|
| 781 |
+
# Test associative retrieval
|
| 782 |
+
print("\nTesting associative retrieval...")
|
| 783 |
+
|
| 784 |
+
query_items = ["apple", "red", 2]
|
| 785 |
+
for query in query_items:
|
| 786 |
+
associations = system.find_associations(query, top_k=5)
|
| 787 |
+
print(f"\nItems associated with '{query}':")
|
| 788 |
+
for i, (item, similarity) in enumerate(associations[:3]):
|
| 789 |
+
print(f" {i+1}. {item} (similarity: {similarity:.3f})")
|
| 790 |
+
|
| 791 |
+
# Test Hebbian adaptation
|
| 792 |
+
print("\nTesting Hebbian adaptation with repeated associations...")
|
| 793 |
+
|
| 794 |
+
# Repeatedly associate "apple" with "healthy"
|
| 795 |
+
for _ in range(5):
|
| 796 |
+
system.add_item("apple", associated_items=["healthy", "nutrition"])
|
| 797 |
+
|
| 798 |
+
# Check if "healthy" becomes more associated with "apple"
|
| 799 |
+
updated_associations = system.find_associations("apple", top_k=5)
|
| 800 |
+
print("Updated associations for 'apple' after repeated 'healthy' associations:")
|
| 801 |
+
for item, similarity in updated_associations[:3]:
|
| 802 |
+
print(f" {item}: {similarity:.3f}")
|
| 803 |
+
|
| 804 |
+
# System statistics
|
| 805 |
+
stats = system.get_system_statistics()
|
| 806 |
+
print(f"\nSystem Statistics:")
|
| 807 |
+
print(f" - Total accesses: {stats['global_access_count']}")
|
| 808 |
+
|
| 809 |
+
for filter_stats in stats['filter_statistics']:
|
| 810 |
+
print(f" Filter {filter_stats['filter_id']}:")
|
| 811 |
+
print(f" - Items added: {filter_stats['total_items']}")
|
| 812 |
+
print(f" - Bit utilization: {filter_stats['bit_array_utilization']:.3f}")
|
| 813 |
+
print(f" - Average confidence: {filter_stats['average_confidence']:.3f}")
|
| 814 |
+
|
| 815 |
+
# Test temporal decay
|
| 816 |
+
print("\nApplying temporal decay...")
|
| 817 |
+
system.system_maintenance()
|
| 818 |
+
|
| 819 |
+
print("\nHebbian Bloom Filter test completed!")
|
| 820 |
+
print("✓ Self-organizing hash functions with Hebbian learning")
|
| 821 |
+
print("✓ Associative memory formation")
|
| 822 |
+
print("✓ Adaptive confidence estimation")
|
| 823 |
+
print("✓ Temporal decay and forgetting mechanisms")
|
| 824 |
+
print("✓ Ensemble filtering for robust membership testing")
|
| 825 |
+
|
| 826 |
+
return True
|
| 827 |
+
|
| 828 |
+
def hebbian_learning_demo():
|
| 829 |
+
"""Demonstrate Hebbian learning in action."""
|
| 830 |
+
print("\n" + "="*60)
|
| 831 |
+
print("HEBBIAN LEARNING DEMONSTRATION")
|
| 832 |
+
print("="*60)
|
| 833 |
+
|
| 834 |
+
# Create simple single filter for clear demonstration
|
| 835 |
+
hb_filter = HebbianBloomFilter(capacity=100, vector_dim=16, num_hash_functions=4)
|
| 836 |
+
|
| 837 |
+
# Add items with strong associations
|
| 838 |
+
print("Phase 1: Adding animal-habitat associations")
|
| 839 |
+
|
| 840 |
+
animals_habitats = [
|
| 841 |
+
("lion", ["savanna", "africa", "predator"]),
|
| 842 |
+
("tiger", ["jungle", "asia", "predator"]),
|
| 843 |
+
("penguin", ["antarctica", "ice", "bird"]),
|
| 844 |
+
("shark", ["ocean", "water", "predator"]),
|
| 845 |
+
("eagle", ["mountain", "sky", "bird"])
|
| 846 |
+
]
|
| 847 |
+
|
| 848 |
+
for animal, habitats in animals_habitats:
|
| 849 |
+
hb_filter.add(animal, associated_items=habitats)
|
| 850 |
+
for habitat in habitats:
|
| 851 |
+
hb_filter.add(habitat, associated_items=[animal])
|
| 852 |
+
|
| 853 |
+
# Test initial associations
|
| 854 |
+
print("\nInitial associations:")
|
| 855 |
+
similar_to_lion = hb_filter.find_similar_items("lion", top_k=3)
|
| 856 |
+
for item, similarity in similar_to_lion:
|
| 857 |
+
print(f" lion -> {item}: {similarity:.3f}")
|
| 858 |
+
|
| 859 |
+
# Strengthen specific associations through repetition
|
| 860 |
+
print("\nPhase 2: Strengthening lion-savanna association through repetition")
|
| 861 |
+
|
| 862 |
+
for _ in range(10):
|
| 863 |
+
hb_filter.add("lion", associated_items=["savanna"])
|
| 864 |
+
hb_filter.add("savanna", associated_items=["lion"])
|
| 865 |
+
|
| 866 |
+
# Test strengthened associations
|
| 867 |
+
print("\nStrengthened associations:")
|
| 868 |
+
similar_to_lion = hb_filter.find_similar_items("lion", top_k=3)
|
| 869 |
+
for item, similarity in similar_to_lion:
|
| 870 |
+
print(f" lion -> {item}: {similarity:.3f}")
|
| 871 |
+
|
| 872 |
+
# Show hash function adaptation
|
| 873 |
+
stats = hb_filter.get_hash_statistics()
|
| 874 |
+
print(f"\nHash function adaptation statistics:")
|
| 875 |
+
for hash_stat in stats['hash_function_stats'][:2]: # Show first 2
|
| 876 |
+
print(f" Hash function {hash_stat['function_id']}:")
|
| 877 |
+
print(f" - Hebbian weights mean: {hash_stat['hebbian_weights_mean']:.4f}")
|
| 878 |
+
print(f" - Plasticity rate: {hash_stat['plasticity_rate']:.4f}")
|
| 879 |
+
|
| 880 |
+
print("\n Hebbian learning successfully demonstrated")
|
| 881 |
+
print(" Repeated associations strengthen neural pathways in hash functions")
|
| 882 |
+
|
| 883 |
+
if __name__ == "__main__":
|
| 884 |
+
test_hebbian_bloom()
|
| 885 |
+
hebbian_learning_demo()
|
| 886 |
+
|
| 887 |
+
###########################################################################################################################################
|
| 888 |
+
###########################################################################################################################################
|