229nagibator229 commited on
Commit
0c77726
·
verified ·
1 Parent(s): 48d38ef

Upload model

Browse files
Files changed (5) hide show
  1. README.md +199 -0
  2. config.json +12 -0
  3. configuration_encoder.py +13 -0
  4. model.safetensors +3 -0
  5. modelling_encoder.py +76 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "EncoderModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_encoder.EncoderConfig",
7
+ "AutoModel": "modelling_encoder.EncoderModel"
8
+ },
9
+ "model_type": "openvla_encoder",
10
+ "torch_dtype": "float32",
11
+ "transformers_version": "4.46.2"
12
+ }
configuration_encoder.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+ from typing import List
3
+
4
+
5
+
6
+ class EncoderConfig(PretrainedConfig):
7
+ model_type = "openvla_encoder"
8
+
9
+ def __init__(
10
+ self,
11
+ **kwargs,
12
+ ):
13
+ super().__init__(**kwargs)
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ded54c6da7a723a8d90136d8ac8c60f802e0d146a253657df1159eabc8ef4532
3
+ size 1212959392
modelling_encoder.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import timm
4
+ import torch
5
+ import torch.nn as nn
6
+ from transformers import PreTrainedModel
7
+ from timm.models.vision_transformer import LayerScale
8
+ from functools import partial
9
+ from typing import Any, Callable, Tuple
10
+ from transformers import PreTrainedModel
11
+ from .configuration_encoder import EncoderConfig
12
+
13
+
14
+
15
+ # === Utility Functions for Monkey-Patching ===
16
+ def _ls_new_forward(self, x: torch.Tensor) -> torch.Tensor:
17
+ """
18
+ Patch LayerScale forward method to use scale_factor instead of gamma.
19
+ """
20
+ return x.mul_(self.scale_factor) if self.inplace else x * self.scale_factor
21
+
22
+
23
+ def ls_apply_patch(ls_module: LayerScale):
24
+ """
25
+ Apply the LayerScale patch to replace gamma with scale_factor.
26
+ """
27
+ ls_module.scale_factor = nn.Parameter(ls_module.gamma.clone())
28
+ ls_module.forward = _ls_new_forward.__get__(ls_module, LayerScale)
29
+ del ls_module.gamma
30
+
31
+ def unpack_tuple(fn: Callable[[Any], Tuple[Any]]) -> Callable[[Any], Any]:
32
+ """
33
+ Utility function to unpack tuple results from the model's intermediate layers.
34
+ """
35
+ def wrapper(*args: Any, **kwargs: Any) -> Any:
36
+ result = fn(*args, **kwargs)
37
+ return result[0] if isinstance(result, tuple) else result
38
+
39
+ return wrapper
40
+
41
+ class EncoderModel(PreTrainedModel):
42
+ """
43
+ Custom Vision Transformer Encoder based on timm's Vision Transformer.
44
+ """
45
+ config_class = EncoderConfig
46
+ def __init__(self, config):
47
+ """
48
+ Initializes the model. No configurable parameters as it's tied to specific weights.
49
+ """
50
+ super().__init__(config)
51
+ self.encoder = timm.create_model(
52
+ "vit_large_patch14_reg4_dinov2.lvd142m",
53
+ img_size=224,
54
+ num_classes=0,
55
+ pretrained=False
56
+ )
57
+
58
+ # Apply LayerScale patch
59
+ for module in self.encoder.modules():
60
+ if isinstance(module, LayerScale):
61
+ ls_apply_patch(module)
62
+
63
+ # Patch forward method to return specific intermediate layers
64
+ self.encoder.forward = unpack_tuple(
65
+ partial( self.encoder.get_intermediate_layers, n={len(self.encoder.blocks) - 2})
66
+ )
67
+
68
+ def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
69
+ """
70
+ Forward pass for the vision encoder.
71
+ Args:
72
+ pixel_values (torch.Tensor): Input tensor of shape (batch_size, channels, height, width).
73
+ Returns:
74
+ torch.Tensor: The output embeddings.
75
+ """
76
+ return self.encoder.forward(pixel_values)