doyooon commited on
Commit
8184aec
Β·
verified Β·
1 Parent(s): cf283b4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +140 -3
README.md CHANGED
@@ -1,3 +1,140 @@
1
- ---
2
- license: cc
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ tags:
4
+ - image-classification
5
+ - pytorch
6
+ - defect-detection
7
+ - manufacturing
8
+ - quality-control
9
+ language:
10
+ - ko
11
+ datasets:
12
+ - custom
13
+ metrics:
14
+ - accuracy
15
+ library_name: pytorch
16
+ pipeline_tag: image-classification
17
+ ---
18
+
19
+ # 의μž₯곡정 λΆˆλŸ‰ν’ˆ λΆ„λ₯˜ λͺ¨λΈ (Assembly Process Defect Classification)
20
+
21
+ 이 λͺ¨λΈμ€ 의μž₯κ³΅μ •μ—μ„œ λ°œμƒν•˜λŠ” λ‹€μ–‘ν•œ λΆˆλŸ‰ μœ ν˜•μ„ λΆ„λ₯˜ν•˜κΈ° μœ„ν•΄ ResNet50 μ•„ν‚€ν…μ²˜λ₯Ό 기반으둜 νŒŒμΈνŠœλ‹λœ λͺ¨λΈμž…λ‹ˆλ‹€.
22
+
23
+ ## λͺ¨λΈ 정보
24
+
25
+ - **μ•„ν‚€ν…μ²˜**: ResNet50
26
+ - **클래슀 수**: 24개
27
+ - **μž…λ ₯ 크기**: 224x224 RGB 이미지
28
+ - **λΆ„λ₯˜ μΉ΄ν…Œκ³ λ¦¬**: 12κ°€μ§€ λΆˆλŸ‰ μœ ν˜• Γ— 2κ°€μ§€ ν’ˆμ§ˆ μƒνƒœ (λΆˆλŸ‰ν’ˆ/μ–‘ν’ˆ)
29
+
30
+ ## λΆ„λ₯˜ 클래슀
31
+
32
+ ### λΆˆλŸ‰ μœ ν˜•λ³„ λΆ„λ₯˜
33
+ - **κ³ μ • λΆˆλŸ‰**: λΆˆλŸ‰ν’ˆ(0), μ–‘ν’ˆ(1)
34
+ - **κ³ μ •ν•€ λΆˆλŸ‰**: λΆˆλŸ‰ν’ˆ(2), μ–‘ν’ˆ(3)
35
+ - **단차**: λΆˆλŸ‰ν’ˆ(4), μ–‘ν’ˆ(5)
36
+ - **슀크래치**: λΆˆλŸ‰ν’ˆ(6), μ–‘ν’ˆ(7)
37
+ - **싀링 λΆˆλŸ‰**: λΆˆλŸ‰ν’ˆ(8), μ–‘ν’ˆ(9)
38
+ - **연계 λΆˆλŸ‰**: λΆˆλŸ‰ν’ˆ(10), μ–‘ν’ˆ(11)
39
+ - **μ™Έκ΄€ 손상**: λΆˆλŸ‰ν’ˆ(12), μ–‘ν’ˆ(13)
40
+ - **유격 λΆˆλŸ‰**: λΆˆλŸ‰ν’ˆ(14), μ–‘ν’ˆ(15)
41
+ - **μž₯μ°© λΆˆλŸ‰**: λΆˆλŸ‰ν’ˆ(16), μ–‘ν’ˆ(17)
42
+ - **체결 λΆˆλŸ‰**: λΆˆλŸ‰ν’ˆ(18), μ–‘ν’ˆ(19)
43
+ - **헀밍 λΆˆλŸ‰**: λΆˆλŸ‰ν’ˆ(20), μ–‘ν’ˆ(21)
44
+ - **홀 λ³€ν˜•**: λΆˆλŸ‰ν’ˆ(22), μ–‘ν’ˆ(23)
45
+
46
+ ## μ‚¬μš©λ²•
47
+
48
+ ### λͺ¨λΈ λ‘œλ“œ 및 μΆ”λ‘ 
49
+
50
+ ```python
51
+ import torch
52
+ from torchvision import models, transforms
53
+ from PIL import Image
54
+
55
+ # λͺ¨λΈ λ‘œλ“œ
56
+ model = models.resnet50(num_classes=24)
57
+ model.fc = torch.nn.Linear(model.fc.in_features, 24)
58
+ model.load_state_dict(torch.load('pytorch_model.bin', map_location='cpu'))
59
+ model.eval()
60
+
61
+ # 이미지 μ „μ²˜λ¦¬
62
+ transform = transforms.Compose([
63
+ transforms.Resize((224, 224)),
64
+ transforms.ToTensor(),
65
+ transforms.Normalize(mean=[0.485, 0.456, 0.406],
66
+ std=[0.229, 0.224, 0.225])
67
+ ])
68
+
69
+ # μΆ”λ‘ 
70
+ img = Image.open('your_image.jpg').convert('RGB')
71
+ input_tensor = transform(img).unsqueeze(0)
72
+
73
+ with torch.no_grad():
74
+ outputs = model(input_tensor)
75
+ predicted_class = torch.argmax(outputs, dim=1).item()
76
+
77
+ # 클래슀λͺ… λ§€ν•‘
78
+ class_names = {
79
+ 0: 'κ³ μ • λΆˆλŸ‰_λΆˆλŸ‰ν’ˆ', 1: 'κ³ μ • λΆˆλŸ‰_μ–‘ν’ˆ',
80
+ 2: 'κ³ μ •ν•€ λΆˆλŸ‰_λΆˆλŸ‰ν’ˆ', 3: 'κ³ μ •ν•€ λΆˆλŸ‰_μ–‘ν’ˆ',
81
+ 4: '단차_λΆˆλŸ‰ν’ˆ', 5: '단차_μ–‘ν’ˆ',
82
+ 6: '슀크래치_λΆˆλŸ‰ν’ˆ', 7: '슀크래치_μ–‘ν’ˆ',
83
+ 8: '싀링 λΆˆλŸ‰_λΆˆλŸ‰ν’ˆ', 9: '싀링 λΆˆλŸ‰_μ–‘ν’ˆ',
84
+ 10: '연계 λΆˆλŸ‰_λΆˆλŸ‰ν’ˆ', 11: '연계 λΆˆλŸ‰_μ–‘ν’ˆ',
85
+ 12: 'μ™Έκ΄€ 손상_λΆˆλŸ‰ν’ˆ', 13: 'μ™Έκ΄€ 손상_μ–‘ν’ˆ',
86
+ 14: '유격 λΆˆλŸ‰_λΆˆλŸ‰ν’ˆ', 15: '유격 λΆˆλŸ‰_μ–‘ν’ˆ',
87
+ 16: 'μž₯μ°© λΆˆλŸ‰_λΆˆλŸ‰ν’ˆ', 17: 'μž₯μ°© λΆˆλŸ‰_μ–‘ν’ˆ',
88
+ 18: '체결 λΆˆλŸ‰_λΆˆλŸ‰ν’ˆ', 19: '체결 λΆˆλŸ‰_μ–‘ν’ˆ',
89
+ 20: '헀밍 λΆˆλŸ‰_λΆˆλŸ‰ν’ˆ', 21: '헀밍 λΆˆλŸ‰_μ–‘ν’ˆ',
90
+ 22: '홀 λ³€ν˜•_λΆˆλŸ‰ν’ˆ', 23: '홀 λ³€ν˜•_μ–‘ν’ˆ'
91
+ }
92
+
93
+ print(f"예츑 결과: {class_names[predicted_class]}")
94
+ ```
95
+
96
+ ### ν—ˆκΉ…νŽ˜μ΄μŠ€ Transformers 라이브러리 μ‚¬μš©
97
+
98
+ ```python
99
+ from transformers import AutoConfig
100
+ import torch
101
+ from torchvision import models
102
+
103
+ # μ„€μ • λ‘œλ“œ
104
+ config = AutoConfig.from_pretrained('your-username/defect-classification-resnet50')
105
+
106
+ # λͺ¨λΈ λ‘œλ“œ
107
+ model = models.resnet50(num_classes=config.num_classes)
108
+ model.fc = torch.nn.Linear(model.fc.in_features, config.num_classes)
109
+ model.load_state_dict(torch.hub.load_state_dict_from_url(
110
+ 'https://huggingface.co/your-username/defect-classification-resnet50/resolve/main/pytorch_model.bin',
111
+ map_location='cpu'
112
+ ))
113
+ ```
114
+
115
+ ## λͺ¨λΈ μ„±λŠ₯
116
+
117
+ - **정확도**: 0.7509
118
+ - **검증 데이터셋**: [데이터셋 정보 μž…λ ₯]
119
+
120
+ ## μ œν•œμ‚¬ν•­
121
+
122
+ - 이 λͺ¨λΈμ€ νŠΉμ • 제쑰 ν™˜κ²½μ—μ„œ μˆ˜μ§‘λœ λ°μ΄ν„°λ‘œ ν•™μŠ΅λ˜μ—ˆμœΌλ―€λ‘œ, λ‹€λ₯Έ ν™˜κ²½μ—μ„œλŠ” μ„±λŠ₯이 λ‹¬λΌμ§ˆ 수 μžˆμŠ΅λ‹ˆλ‹€.
123
+ - μ‹€μ œ 운영 ν™˜κ²½μ—μ„œ μ‚¬μš©ν•˜κΈ° 전에 μΆ©λΆ„ν•œ ν…ŒμŠ€νŠΈλ₯Ό ꢌμž₯ν•©λ‹ˆλ‹€.
124
+
125
+ ## λΌμ΄μ„ μŠ€
126
+
127
+ CC BY-NC
128
+
129
+ ## 인용
130
+
131
+ 이 λͺ¨λΈμ„ μ‚¬μš©ν•˜μ‹ λ‹€λ©΄ λ‹€μŒκ³Ό 같이 μΈμš©ν•΄μ£Όμ„Έμš”:
132
+
133
+ ```
134
+ @misc{vehicle-assembly-process-defect-detection-model,
135
+ title={Assembly Process Defect Classification with ResNet50},
136
+ author={doyoon kwon},
137
+ year={2025},
138
+ url={https://huggingface.co/23smartfactory/vehicle-assembly-process-defect-detection-model}
139
+ }
140
+ ```