Update assets/evalPytrec.py
Browse files- assets/evalPytrec.py +183 -183
assets/evalPytrec.py
CHANGED
|
@@ -1,183 +1,183 @@
|
|
| 1 |
-
import os
|
| 2 |
-
|
| 3 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
| 4 |
-
os.environ["HF_HOME"] = "../../cache/hgCache"
|
| 5 |
-
os.environ["TRANSFORMERS_CACHE"] = "../../cache/transformersCache/"
|
| 6 |
-
|
| 7 |
-
import glob
|
| 8 |
-
import logging
|
| 9 |
-
import sys
|
| 10 |
-
from collections import defaultdict
|
| 11 |
-
|
| 12 |
-
import numpy as np
|
| 13 |
-
import pytrec_eval
|
| 14 |
-
import tqdm, torch
|
| 15 |
-
import pandas as pd
|
| 16 |
-
from pylate import models, rank
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
document_length = 512
|
| 20 |
-
|
| 21 |
-
model_name_or_paths = [
|
| 22 |
-
"9eren99/TrColBERT",
|
| 23 |
-
"jinaai/jina-colbert-v2",
|
| 24 |
-
"antoinelouis/colbert-xm",
|
| 25 |
-
]
|
| 26 |
-
|
| 27 |
-
datasetnames = [
|
| 28 |
-
"fiqa2018",
|
| 29 |
-
"climatefever",
|
| 30 |
-
"dbpedia",
|
| 31 |
-
"fever",
|
| 32 |
-
"hotpotqa",
|
| 33 |
-
# "msmarco",
|
| 34 |
-
"nfcorpus",
|
| 35 |
-
"nq",
|
| 36 |
-
"quoraretrieval",
|
| 37 |
-
"scidocs",
|
| 38 |
-
"arguana",
|
| 39 |
-
"scifact",
|
| 40 |
-
"touche2020",
|
| 41 |
-
]
|
| 42 |
-
for datasetname in datasetnames:
|
| 43 |
-
print("#############", datasetname, "##############")
|
| 44 |
-
evalResultsDf = None
|
| 45 |
-
for model_name_or_path in model_name_or_paths:
|
| 46 |
-
torch.cuda.empty_cache()
|
| 47 |
-
if "jinaai/jina-colbert-v2" == model_name_or_path:
|
| 48 |
-
model = models.ColBERT(
|
| 49 |
-
model_name_or_path=model_name_or_path,
|
| 50 |
-
query_prefix="[QueryMarker]",
|
| 51 |
-
document_prefix="[DocumentMarker]",
|
| 52 |
-
attend_to_expansion_tokens=True,
|
| 53 |
-
trust_remote_code=True,
|
| 54 |
-
document_length=document_length,
|
| 55 |
-
)
|
| 56 |
-
elif "antoinelouis/colbert-xm" == model_name_or_path:
|
| 57 |
-
model = models.ColBERT(model_name_or_path="antoinelouis/colbert-xm")
|
| 58 |
-
language = "tr_TR" # Use a code from https://huggingface.co/facebook/xmod-base#languages
|
| 59 |
-
|
| 60 |
-
backbone = model[0].auto_model
|
| 61 |
-
if backbone.__class__.__name__.lower().startswith("xmod"):
|
| 62 |
-
backbone.set_default_language(language)
|
| 63 |
-
else:
|
| 64 |
-
model = models.ColBERT(
|
| 65 |
-
model_name_or_path=model_name_or_path,
|
| 66 |
-
document_length=document_length,
|
| 67 |
-
attend_to_expansion_tokens=(
|
| 68 |
-
True if "attend" in model_name_or_path else False
|
| 69 |
-
),
|
| 70 |
-
)
|
| 71 |
-
|
| 72 |
-
model.eval()
|
| 73 |
-
model.to("cuda")
|
| 74 |
-
|
| 75 |
-
dfDocs = pd.read_parquet(
|
| 76 |
-
f"datasets/{datasetname}/corpus/train-00000-of-00001.parquet"
|
| 77 |
-
).dropna()
|
| 78 |
-
dfQueries = pd.read_parquet(
|
| 79 |
-
f"datasets/{datasetname}/queries/train-00000-of-00001.parquet"
|
| 80 |
-
).dropna()
|
| 81 |
-
|
| 82 |
-
if "
|
| 83 |
-
try:
|
| 84 |
-
model.tokenizer.model_input_names.remove("token_type_ids")
|
| 85 |
-
except:
|
| 86 |
-
print(model_name_or_path)
|
| 87 |
-
dfDocs.TurkishText = dfDocs.TurkishText.apply(
|
| 88 |
-
lambda x: x.replace("İ", "i").replace("I", "ı").lower()
|
| 89 |
-
)
|
| 90 |
-
dfQueries.TurkishText = dfQueries.TurkishText.apply(
|
| 91 |
-
lambda x: x.replace("İ", "i").replace("I", "ı").lower()
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
# Read test queries
|
| 95 |
-
queries = []
|
| 96 |
-
documents = []
|
| 97 |
-
passage_cand = {}
|
| 98 |
-
relevant_qid = []
|
| 99 |
-
relevant_docs = defaultdict(lambda: defaultdict(int))
|
| 100 |
-
|
| 101 |
-
# read corpus
|
| 102 |
-
newId2oldId_Docs = {}
|
| 103 |
-
for i, row in enumerate(dfDocs.values):
|
| 104 |
-
documents.append(row[2])
|
| 105 |
-
newId2oldId_Docs[i] = str(row[0])
|
| 106 |
-
relevant_qid.append(str(row[0]))
|
| 107 |
-
|
| 108 |
-
# read queries
|
| 109 |
-
newId2oldId_Queries = {}
|
| 110 |
-
for i, row in enumerate(dfQueries.values):
|
| 111 |
-
queries.append(row[2])
|
| 112 |
-
newId2oldId_Queries[i] = str(row[0])
|
| 113 |
-
|
| 114 |
-
for j, rowDoc in enumerate(dfDocs.values):
|
| 115 |
-
relevant_docs[str(row[0])][str(rowDoc[0])] = 0
|
| 116 |
-
|
| 117 |
-
# read qrels
|
| 118 |
-
dfQrels = pd.read_parquet(
|
| 119 |
-
f"datasets/{datasetname}/qrels/train-00000-of-00001.parquet"
|
| 120 |
-
)
|
| 121 |
-
for i, row in enumerate(dfQrels.values):
|
| 122 |
-
relevant_docs[str(row[0])][str(row[1])] = 1
|
| 123 |
-
|
| 124 |
-
candidateIds = [[i for i in range(len(documents))]]
|
| 125 |
-
|
| 126 |
-
queries_result_list = []
|
| 127 |
-
run = {}
|
| 128 |
-
|
| 129 |
-
documents_embeddings = model.encode(
|
| 130 |
-
[documents], is_query=False, show_progress_bar=True
|
| 131 |
-
)
|
| 132 |
-
|
| 133 |
-
for i, query in enumerate(tqdm.tqdm(queries)):
|
| 134 |
-
|
| 135 |
-
queries_embeddings = model.encode(
|
| 136 |
-
[query],
|
| 137 |
-
is_query=True,
|
| 138 |
-
)
|
| 139 |
-
|
| 140 |
-
reranked_documents = rank.rerank(
|
| 141 |
-
documents_ids=candidateIds,
|
| 142 |
-
queries_embeddings=queries_embeddings,
|
| 143 |
-
documents_embeddings=documents_embeddings,
|
| 144 |
-
)
|
| 145 |
-
|
| 146 |
-
run[newId2oldId_Queries[i]] = {}
|
| 147 |
-
for resDict in reranked_documents[0]:
|
| 148 |
-
run[newId2oldId_Queries[i]][newId2oldId_Docs[resDict["id"]]] = float(
|
| 149 |
-
resDict["score"]
|
| 150 |
-
)
|
| 151 |
-
|
| 152 |
-
evaluator = pytrec_eval.RelevanceEvaluator(
|
| 153 |
-
relevant_docs, pytrec_eval.supported_measures
|
| 154 |
-
)
|
| 155 |
-
scores = evaluator.evaluate(run)
|
| 156 |
-
|
| 157 |
-
def print_line(measure, scope, value):
|
| 158 |
-
print("{:25s}{:8s}{:.4f}".format(measure, scope, value))
|
| 159 |
-
|
| 160 |
-
for query_id, query_measures in sorted(scores.items()):
|
| 161 |
-
break
|
| 162 |
-
for measure, value in sorted(query_measures.items()):
|
| 163 |
-
print_line(measure, query_id, value)
|
| 164 |
-
|
| 165 |
-
# Scope hack: use query_measures of last item in previous loop to
|
| 166 |
-
# figure out all unique measure names.
|
| 167 |
-
resultsColumns = ["model name"]
|
| 168 |
-
resultsRow = [model_name_or_path]
|
| 169 |
-
for measure in sorted(query_measures.keys()):
|
| 170 |
-
resultsColumns.append(measure)
|
| 171 |
-
resultsRow.append(
|
| 172 |
-
pytrec_eval.compute_aggregated_measure(
|
| 173 |
-
measure,
|
| 174 |
-
[query_measures[measure] for query_measures in scores.values()],
|
| 175 |
-
)
|
| 176 |
-
)
|
| 177 |
-
|
| 178 |
-
if evalResultsDf is None:
|
| 179 |
-
evalResultsDf = pd.DataFrame(columns=resultsColumns)
|
| 180 |
-
evalResultsDf.loc[-1] = resultsRow
|
| 181 |
-
evalResultsDf.index = evalResultsDf.index + 1
|
| 182 |
-
|
| 183 |
-
evalResultsDf.to_csv(f"resultsn/{datasetname}.csv", encoding="utf-8")
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
| 4 |
+
os.environ["HF_HOME"] = "../../cache/hgCache"
|
| 5 |
+
os.environ["TRANSFORMERS_CACHE"] = "../../cache/transformersCache/"
|
| 6 |
+
|
| 7 |
+
import glob
|
| 8 |
+
import logging
|
| 9 |
+
import sys
|
| 10 |
+
from collections import defaultdict
|
| 11 |
+
|
| 12 |
+
import numpy as np
|
| 13 |
+
import pytrec_eval
|
| 14 |
+
import tqdm, torch
|
| 15 |
+
import pandas as pd
|
| 16 |
+
from pylate import models, rank
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
document_length = 512
|
| 20 |
+
|
| 21 |
+
model_name_or_paths = [
|
| 22 |
+
"9eren99/TrColBERT",
|
| 23 |
+
"jinaai/jina-colbert-v2",
|
| 24 |
+
"antoinelouis/colbert-xm",
|
| 25 |
+
]
|
| 26 |
+
|
| 27 |
+
datasetnames = [
|
| 28 |
+
"fiqa2018",
|
| 29 |
+
"climatefever",
|
| 30 |
+
"dbpedia",
|
| 31 |
+
"fever",
|
| 32 |
+
"hotpotqa",
|
| 33 |
+
# "msmarco",
|
| 34 |
+
"nfcorpus",
|
| 35 |
+
"nq",
|
| 36 |
+
"quoraretrieval",
|
| 37 |
+
"scidocs",
|
| 38 |
+
"arguana",
|
| 39 |
+
"scifact",
|
| 40 |
+
"touche2020",
|
| 41 |
+
]
|
| 42 |
+
for datasetname in datasetnames:
|
| 43 |
+
print("#############", datasetname, "##############")
|
| 44 |
+
evalResultsDf = None
|
| 45 |
+
for model_name_or_path in model_name_or_paths:
|
| 46 |
+
torch.cuda.empty_cache()
|
| 47 |
+
if "jinaai/jina-colbert-v2" == model_name_or_path:
|
| 48 |
+
model = models.ColBERT(
|
| 49 |
+
model_name_or_path=model_name_or_path,
|
| 50 |
+
query_prefix="[QueryMarker]",
|
| 51 |
+
document_prefix="[DocumentMarker]",
|
| 52 |
+
attend_to_expansion_tokens=True,
|
| 53 |
+
trust_remote_code=True,
|
| 54 |
+
document_length=document_length,
|
| 55 |
+
)
|
| 56 |
+
elif "antoinelouis/colbert-xm" == model_name_or_path:
|
| 57 |
+
model = models.ColBERT(model_name_or_path="antoinelouis/colbert-xm")
|
| 58 |
+
language = "tr_TR" # Use a code from https://huggingface.co/facebook/xmod-base#languages
|
| 59 |
+
|
| 60 |
+
backbone = model[0].auto_model
|
| 61 |
+
if backbone.__class__.__name__.lower().startswith("xmod"):
|
| 62 |
+
backbone.set_default_language(language)
|
| 63 |
+
else:
|
| 64 |
+
model = models.ColBERT(
|
| 65 |
+
model_name_or_path=model_name_or_path,
|
| 66 |
+
document_length=document_length,
|
| 67 |
+
attend_to_expansion_tokens=(
|
| 68 |
+
True if "attend" in model_name_or_path else False
|
| 69 |
+
),
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
model.eval()
|
| 73 |
+
model.to("cuda")
|
| 74 |
+
|
| 75 |
+
dfDocs = pd.read_parquet(
|
| 76 |
+
f"datasets/{datasetname}/corpus/train-00000-of-00001.parquet"
|
| 77 |
+
).dropna()
|
| 78 |
+
dfQueries = pd.read_parquet(
|
| 79 |
+
f"datasets/{datasetname}/queries/train-00000-of-00001.parquet"
|
| 80 |
+
).dropna()
|
| 81 |
+
|
| 82 |
+
if "99eren99/TrColBERT" == model_name_or_path:
|
| 83 |
+
try:
|
| 84 |
+
model.tokenizer.model_input_names.remove("token_type_ids")
|
| 85 |
+
except:
|
| 86 |
+
print(model_name_or_path)
|
| 87 |
+
dfDocs.TurkishText = dfDocs.TurkishText.apply(
|
| 88 |
+
lambda x: x.replace("İ", "i").replace("I", "ı").lower()
|
| 89 |
+
)
|
| 90 |
+
dfQueries.TurkishText = dfQueries.TurkishText.apply(
|
| 91 |
+
lambda x: x.replace("İ", "i").replace("I", "ı").lower()
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# Read test queries
|
| 95 |
+
queries = []
|
| 96 |
+
documents = []
|
| 97 |
+
passage_cand = {}
|
| 98 |
+
relevant_qid = []
|
| 99 |
+
relevant_docs = defaultdict(lambda: defaultdict(int))
|
| 100 |
+
|
| 101 |
+
# read corpus
|
| 102 |
+
newId2oldId_Docs = {}
|
| 103 |
+
for i, row in enumerate(dfDocs.values):
|
| 104 |
+
documents.append(row[2])
|
| 105 |
+
newId2oldId_Docs[i] = str(row[0])
|
| 106 |
+
relevant_qid.append(str(row[0]))
|
| 107 |
+
|
| 108 |
+
# read queries
|
| 109 |
+
newId2oldId_Queries = {}
|
| 110 |
+
for i, row in enumerate(dfQueries.values):
|
| 111 |
+
queries.append(row[2])
|
| 112 |
+
newId2oldId_Queries[i] = str(row[0])
|
| 113 |
+
|
| 114 |
+
for j, rowDoc in enumerate(dfDocs.values):
|
| 115 |
+
relevant_docs[str(row[0])][str(rowDoc[0])] = 0
|
| 116 |
+
|
| 117 |
+
# read qrels
|
| 118 |
+
dfQrels = pd.read_parquet(
|
| 119 |
+
f"datasets/{datasetname}/qrels/train-00000-of-00001.parquet"
|
| 120 |
+
)
|
| 121 |
+
for i, row in enumerate(dfQrels.values):
|
| 122 |
+
relevant_docs[str(row[0])][str(row[1])] = 1
|
| 123 |
+
|
| 124 |
+
candidateIds = [[i for i in range(len(documents))]]
|
| 125 |
+
|
| 126 |
+
queries_result_list = []
|
| 127 |
+
run = {}
|
| 128 |
+
|
| 129 |
+
documents_embeddings = model.encode(
|
| 130 |
+
[documents], is_query=False, show_progress_bar=True
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
for i, query in enumerate(tqdm.tqdm(queries)):
|
| 134 |
+
|
| 135 |
+
queries_embeddings = model.encode(
|
| 136 |
+
[query],
|
| 137 |
+
is_query=True,
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
reranked_documents = rank.rerank(
|
| 141 |
+
documents_ids=candidateIds,
|
| 142 |
+
queries_embeddings=queries_embeddings,
|
| 143 |
+
documents_embeddings=documents_embeddings,
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
run[newId2oldId_Queries[i]] = {}
|
| 147 |
+
for resDict in reranked_documents[0]:
|
| 148 |
+
run[newId2oldId_Queries[i]][newId2oldId_Docs[resDict["id"]]] = float(
|
| 149 |
+
resDict["score"]
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
evaluator = pytrec_eval.RelevanceEvaluator(
|
| 153 |
+
relevant_docs, pytrec_eval.supported_measures
|
| 154 |
+
)
|
| 155 |
+
scores = evaluator.evaluate(run)
|
| 156 |
+
|
| 157 |
+
def print_line(measure, scope, value):
|
| 158 |
+
print("{:25s}{:8s}{:.4f}".format(measure, scope, value))
|
| 159 |
+
|
| 160 |
+
for query_id, query_measures in sorted(scores.items()):
|
| 161 |
+
break
|
| 162 |
+
for measure, value in sorted(query_measures.items()):
|
| 163 |
+
print_line(measure, query_id, value)
|
| 164 |
+
|
| 165 |
+
# Scope hack: use query_measures of last item in previous loop to
|
| 166 |
+
# figure out all unique measure names.
|
| 167 |
+
resultsColumns = ["model name"]
|
| 168 |
+
resultsRow = [model_name_or_path]
|
| 169 |
+
for measure in sorted(query_measures.keys()):
|
| 170 |
+
resultsColumns.append(measure)
|
| 171 |
+
resultsRow.append(
|
| 172 |
+
pytrec_eval.compute_aggregated_measure(
|
| 173 |
+
measure,
|
| 174 |
+
[query_measures[measure] for query_measures in scores.values()],
|
| 175 |
+
)
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
if evalResultsDf is None:
|
| 179 |
+
evalResultsDf = pd.DataFrame(columns=resultsColumns)
|
| 180 |
+
evalResultsDf.loc[-1] = resultsRow
|
| 181 |
+
evalResultsDf.index = evalResultsDf.index + 1
|
| 182 |
+
|
| 183 |
+
evalResultsDf.to_csv(f"resultsn/{datasetname}.csv", encoding="utf-8")
|