--- license: mit tags: - keras - medical-imaging - deep-learning - .h5-model framework: keras task: image-translation --- # pyMEAL: Multi-Encoder-Augmentation-Aware-Learning pyMEAL is a multi-encoder framework for augmentation-aware learning that accurately performs CT-to-T1-weighted MRI translation under diverse augmentations. It utilizes four dedicated encoders and three fusion strategies, concatenation (CC), fusion layer (FL), and controller block (BD), to capture augmentation-specific features. MEAL-BD outperforms conventional augmentation methods, achieving SSIM > 0.83 and PSNR > 25 dB in CT-to-T1w translation. ## Dependecies tensorflow matplotlib SimpleITK scipy antspyx --- ## Available Models | Model ID | File Name | Description | |----------|------------------------------------------------|---------------------------------------------| | BD | `builder1_mode1l1abW512_1_11211z1p1rt_.h5` | Builder-based architecture model | | CC | `best_moderRl_RHID2_1mo.h5` | Encoder-concatenation-based configuration | | FL | `bestac22_mode3l_512m2_m21.h5` | Feature-level fusion-based model | | NA | `direct7_11ag23f11.h5` | Direct training baseline model | | TA | `best_modelaf2ndab7_221ag12g11.h5` | traditional augmentation configuration model| --- ### Model Architecture Overview ![Model Diagram](https://huggingface.co/AI-vBRAIN/pyMEAL/resolve/main/Fig1_TA_NA.png) *Figure 1. Model architecture for the model having no augmentation and traditional augmentation.* ![Model2 Diagram](https://huggingface.co/AI-vBRAIN/pyMEAL/resolve/main/Fig2_BD_CC_FL.png) *Figure 2. Model architecture for Multi-Stream with a Builder Controller block method (BD), Fusion layer (FL), and Encoder concatenation (CC).* ## Download Model Files You can download any `.h5` file directly: - [Download builder1_mode1l1abW512_1_11211z1p1rt_.h5](https://huggingface.co/AI-vBRAIN/pyMEAL/resolve/main/builder1_mode1l1abW512_1_11211z1p1rt_.h5) - [Download best_moderRl_RHID2_1mo.h5](https://huggingface.co/AI-vBRAIN/pyMEAL/resolve/main/best_moderRl_RHID2_1mo.h5) - [Download bestac22_mode3l_512m2_m21.h5](https://huggingface.co/AI-vBRAIN/pyMEAL/resolve/main/bestac22_mode3l_512m2_m21.h5) - [Download direct7_11ag23f11.h5](https://huggingface.co/AI-vBRAIN/pyMEAL/resolve/main/direct7_11ag23f11.h5) - [Download best_modelaf2ndab7_221ag12g11.h5](https://huggingface.co/AI-vBRAIN/pyMEAL/resolve/main/best_modelaf2ndab7_221ag12g11.h5) --- ## How to Use ### Load a Model (Basic) ```python import tensorflow as tf # Load the model model = tf.keras.models.load_model("model.h5", compile=False) # Run inference output = model.predict(input_data) ``` Here, `input_data` refers to a CT image, and the corresponding T1-weighted (T1w) image is produced as the output. For detailed instructions on how to use each module of the **pyMEAL** software, please refer to the [tutorial section on our GitHub repository](https://github.com/ai-vbrain/pyMEAL). ### How to cite these models? Please cite the following: ```python @article{ilyas2025pymeal, title={pyMEAL: A Multi-Encoder Augmentation-Aware Learning for Robust and Generalizable Medical Image Translation}, author={Ilyas, Abdul-mojeed Olabisi and Maradesa, Adeleke and Banzi, Jamal and Huang, Jianpan and Mak, Henry KF and Chan, Kannie WY}, journal={arXiv preprint arXiv:2505.24421}, year={2025} } ``` ### How to Get Support? For help, contact: - Dr. Ilyas () - Dr. Maradesa ()