Duke-de-Artois nielsr HF Staff commited on
Commit
3c555d5
·
verified ·
1 Parent(s): beb1da5

Add helper functions (#3)

Browse files

- Add helper functions (1cd304918603715d619b8a2754ae668db03c21ad)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +84 -3
README.md CHANGED
@@ -52,13 +52,94 @@ Codebase and datasets can be found at https://github.com/AI4Chem/ChemVlm.
52
  ## Quick Start
53
 
54
  ```python
55
- from transformers import AutoTokenizer, AutoModelForCausalLM
56
  import torch
57
  import torchvision.transforms as T
 
58
  from torchvision.transforms.functional import InterpolationMode
59
- from PIL import Image
60
 
61
- # ... (helper functions from original model card)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  tokenizer = AutoTokenizer.from_pretrained('AI4Chem/ChemVLM-8B', trust_remote_code=True)
64
  model = AutoModelForCausalLM.from_pretrained(
 
52
  ## Quick Start
53
 
54
  ```python
55
+ from transformers import AutoTokenizer, AutoModelforCasualLM
56
  import torch
57
  import torchvision.transforms as T
58
+ import transformers
59
  from torchvision.transforms.functional import InterpolationMode
 
60
 
61
+
62
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
63
+ IMAGENET_STD = (0.229, 0.224, 0.225)
64
+
65
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
66
+ IMAGENET_STD = (0.229, 0.224, 0.225)
67
+
68
+
69
+ def build_transform(input_size):
70
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
71
+ transform = T.Compose([
72
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
73
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
74
+ T.ToTensor(),
75
+ T.Normalize(mean=MEAN, std=STD)
76
+ ])
77
+ return transform
78
+
79
+
80
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
81
+ best_ratio_diff = float('inf')
82
+ best_ratio = (1, 1)
83
+ area = width * height
84
+ for ratio in target_ratios:
85
+ target_aspect_ratio = ratio[0] / ratio[1]
86
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
87
+ if ratio_diff < best_ratio_diff:
88
+ best_ratio_diff = ratio_diff
89
+ best_ratio = ratio
90
+ elif ratio_diff == best_ratio_diff:
91
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
92
+ best_ratio = ratio
93
+ return best_ratio
94
+
95
+
96
+ def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
97
+ orig_width, orig_height = image.size
98
+ aspect_ratio = orig_width / orig_height
99
+
100
+ # calculate the existing image aspect ratio
101
+ target_ratios = set(
102
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
103
+ i * j <= max_num and i * j >= min_num)
104
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
105
+
106
+ # find the closest aspect ratio to the target
107
+ target_aspect_ratio = find_closest_aspect_ratio(
108
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
109
+
110
+ # calculate the target width and height
111
+ target_width = image_size * target_aspect_ratio[0]
112
+ target_height = image_size * target_aspect_ratio[1]
113
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
114
+
115
+ # resize the image
116
+ resized_img = image.resize((target_width, target_height))
117
+ processed_images = []
118
+ for i in range(blocks):
119
+ box = (
120
+ (i % (target_width // image_size)) * image_size,
121
+ (i // (target_width // image_size)) * image_size,
122
+ ((i % (target_width // image_size)) + 1) * image_size,
123
+ ((i // (target_width // image_size)) + 1) * image_size
124
+ )
125
+ # split the image
126
+ split_img = resized_img.crop(box)
127
+ processed_images.append(split_img)
128
+ assert len(processed_images) == blocks
129
+ if use_thumbnail and len(processed_images) != 1:
130
+ thumbnail_img = image.resize((image_size, image_size))
131
+ processed_images.append(thumbnail_img)
132
+ return processed_images
133
+
134
+
135
+ def load_image(image_file, input_size=448, max_num=6):
136
+ image = Image.open(image_file).convert('RGB')
137
+ transform = build_transform(input_size=input_size)
138
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
139
+ pixel_values = [transform(image) for image in images]
140
+ pixel_values = torch.stack(pixel_values)
141
+ return pixel_values
142
+
143
 
144
  tokenizer = AutoTokenizer.from_pretrained('AI4Chem/ChemVLM-8B', trust_remote_code=True)
145
  model = AutoModelForCausalLM.from_pretrained(