--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: type: token-classification name: Token Classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - type: precision value: 0.9316493313521546 name: Precision - type: recall value: 0.9496802423426456 name: Recall - type: f1 value: 0.9405783815317944 name: F1 - type: accuracy value: 0.9861806087007712 name: Accuracy - task: type: token-classification name: Token Classification dataset: name: conll2003 type: conll2003 config: conll2003 split: test metrics: - type: accuracy value: 0.8996864215817588 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWJkMzFiYTc0YzI3MGRiOGQ0MTA0OTgwYmQ3ODU2ZTk5MGQ5NGQwYjViMzhiZWFjNzUyMmYxM2QxOTQ5ZTI0MyIsInZlcnNpb24iOjF9.SECjYrUHXW-IJZPqjPMM15PAItaCHQKynFjkmu3cXj2wvUh-O_mvAvaqq3fLJSyNQfPyImRc89_gusSsgGD8Aw - type: precision value: 0.9290522347872914 name: Precision verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTdhNzkwYTMzYzE0NzdkNzc0ODQ4NmYwNTVjOGI1ZGQ3YmZlNmJjNzEwNDFiOWZiMGMxYTM1YTIxNGVkMTc2NyIsInZlcnNpb24iOjF9.imy5h8_PQmOLSWZx341f_VdLqaXSUfgmnvBtq8r5l-tc9BbzUqdl5TiyxLyqOt0JFO0lQooirG1YxivynmesBw - type: recall value: 0.9153430381006068 name: Recall verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzY5M2E3ZDc4NWFkNGFkOWY1Mzk3YzIyYzg0Y2U0NzM1ZWRkNjczM2QyODdkMTg5MDhlZDMwOThhMTA3NGFlYSIsInZlcnNpb24iOjF9.8aVjcW3T8W4a9LiEAgakRM_kechC9xK51nAl3SxypmES6MNxVjsYCD8wvxPF7ddgmTCB0vyCTeelgT6HuGhtCQ - type: auc value: NaN name: AUC verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmQ0ZTk4ZWJmNmU4M2U1OTNiZGMyNmNmYmJmMzMwZjQ4MDRlYmYxOWJjNTM0N2FjMWExNGI1ZTVmN2I2MGZhOSIsInZlcnNpb24iOjF9.0B6-aHCUx_SdHfSTlcXlVh8mE3gQe7L2Dk2-RyLp7a3YUzOhJNAj--Bz0I5lGH0m7PffPwBuZpccdnFJfg_WAg - type: f1 value: 0.9221466869331375 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDk1ZWY1MTVhYTZmYzNhYmZkNjdiNjNjMTk0OGMzNzQzMmE0MGI4NTc5YmViZTg3NDQ2MjE1YzNkZDUwZTc4NSIsInZlcnNpb24iOjF9.ZlDFXSg8DZL3KLeU3liwZYWgpF1wrTieUYTVg9lVkgYb7A5jlCcgT4X3LqXCScaIt84BS_6-eqNHV_ukJiUUAQ - type: loss value: 0.8573787212371826 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjY0OWJmZWI5ZTA5ODIzYzE5YmFkZmQ2OTIwOTJlNDU4ZmUyZDFlYTU1MmRjODRlMWZlMmMyYjUwNmQyYzhmNCIsInZlcnNpb24iOjF9.mCnEvOsb3-HlTzhiY7kboe1rCD8ikdyKgEPMixST1qbGoTmfff0ZclZL9Sjz46MREnLYNgPr_whSEzvMWC3aAw --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0630 - Precision: 0.9316 - Recall: 0.9497 - F1: 0.9406 - Accuracy: 0.9862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0885 | 1.0 | 1756 | 0.0692 | 0.9162 | 0.9312 | 0.9236 | 0.9813 | | 0.0364 | 2.0 | 3512 | 0.0652 | 0.9233 | 0.9455 | 0.9342 | 0.9854 | | 0.018 | 3.0 | 5268 | 0.0630 | 0.9316 | 0.9497 | 0.9406 | 0.9862 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3