|
{ |
|
"results": { |
|
"arabicmmlu": { |
|
"acc,none": 0.5813905223106192, |
|
"acc_stderr,none": 0.003974457419363176, |
|
"alias": "arabicmmlu" |
|
}, |
|
"arabicmmlu_humanities": { |
|
"acc,none": 0.6207276736493936, |
|
"acc_stderr,none": 0.007676866448419673, |
|
"alias": " - Humanities" |
|
}, |
|
"arabicmmlu_high_history": { |
|
"alias": " - High History", |
|
"acc,none": 0.4605263157894737, |
|
"acc_stderr,none": 0.01809220376192219 |
|
}, |
|
"arabicmmlu_high_islamic_studies": { |
|
"alias": " - High Islamic Studies", |
|
"acc,none": 0.6167664670658682, |
|
"acc_stderr,none": 0.026642195538092498 |
|
}, |
|
"arabicmmlu_high_philosophy": { |
|
"alias": " - High Philosophy", |
|
"acc,none": 0.6666666666666666, |
|
"acc_stderr,none": 0.07647191129018725 |
|
}, |
|
"arabicmmlu_islamic_studies": { |
|
"alias": " - Islamic Studies", |
|
"acc,none": 0.6071987480438185, |
|
"acc_stderr,none": 0.01933488200369804 |
|
}, |
|
"arabicmmlu_middle_history": { |
|
"alias": " - Middle History", |
|
"acc,none": 0.6650246305418719, |
|
"acc_stderr,none": 0.033208527423483104 |
|
}, |
|
"arabicmmlu_middle_islamic_studies": { |
|
"alias": " - Middle Islamic Studies", |
|
"acc,none": 0.6428571428571429, |
|
"acc_stderr,none": 0.031124619309328177 |
|
}, |
|
"arabicmmlu_primary_history": { |
|
"alias": " - Primary History", |
|
"acc,none": 0.6862745098039216, |
|
"acc_stderr,none": 0.04617034827006718 |
|
}, |
|
"arabicmmlu_primary_islamic_studies": { |
|
"alias": " - Primary Islamic Studies", |
|
"acc,none": 0.8138138138138138, |
|
"acc_stderr,none": 0.012321710081733966 |
|
}, |
|
"arabicmmlu_prof_law": { |
|
"alias": " - Prof Law", |
|
"acc,none": 0.3535031847133758, |
|
"acc_stderr,none": 0.027021390361997532 |
|
}, |
|
"arabicmmlu_language": { |
|
"acc,none": 0.5595382746051033, |
|
"acc_stderr,none": 0.011907567989279312, |
|
"alias": " - Language" |
|
}, |
|
"arabicmmlu_arabic_language_(general)": { |
|
"alias": " - Arabic Language (General)", |
|
"acc,none": 0.6748366013071896, |
|
"acc_stderr,none": 0.018950886770806315 |
|
}, |
|
"arabicmmlu_arabic_language_(grammar)": { |
|
"alias": " - Arabic Language (Grammar)", |
|
"acc,none": 0.5287671232876713, |
|
"acc_stderr,none": 0.02616370969480108 |
|
}, |
|
"arabicmmlu_high_arabic_language": { |
|
"alias": " - High Arabic Language", |
|
"acc,none": 0.37435897435897436, |
|
"acc_stderr,none": 0.024537591572830496 |
|
}, |
|
"arabicmmlu_middle_arabic_language": { |
|
"alias": " - Middle Arabic Language", |
|
"acc,none": 0.5185185185185185, |
|
"acc_stderr,none": 0.09799078929868857 |
|
}, |
|
"arabicmmlu_primary_arabic_language": { |
|
"alias": " - Primary Arabic Language", |
|
"acc,none": 0.6150793650793651, |
|
"acc_stderr,none": 0.03071243955075999 |
|
}, |
|
"arabicmmlu_other": { |
|
"acc,none": 0.645330112721417, |
|
"acc_stderr,none": 0.009605570074720063, |
|
"alias": " - Other" |
|
}, |
|
"arabicmmlu_driving_test": { |
|
"alias": " - Driving Test", |
|
"acc,none": 0.6457473162675474, |
|
"acc_stderr,none": 0.013749762426221467 |
|
}, |
|
"arabicmmlu_general_knowledge": { |
|
"alias": " - General Knowledge", |
|
"acc,none": 0.6516203703703703, |
|
"acc_stderr,none": 0.01621878455756233 |
|
}, |
|
"arabicmmlu_middle_general_knowledge": { |
|
"alias": " - Middle General Knowledge", |
|
"acc,none": 0.6162790697674418, |
|
"acc_stderr,none": 0.03718762118238795 |
|
}, |
|
"arabicmmlu_primary_general_knowledge": { |
|
"alias": " - Primary General Knowledge", |
|
"acc,none": 0.6604938271604939, |
|
"acc_stderr,none": 0.03732031330740126 |
|
}, |
|
"arabicmmlu_univ_management": { |
|
"alias": " - Univ Management", |
|
"acc,none": 0.6, |
|
"acc_stderr,none": 0.05694947974514993 |
|
}, |
|
"arabicmmlu_social_science": { |
|
"acc,none": 0.560216894977169, |
|
"acc_stderr,none": 0.00821187595080662, |
|
"alias": " - Social Science" |
|
}, |
|
"arabicmmlu_high_civics": { |
|
"alias": " - High Civics", |
|
"acc,none": 0.4482758620689655, |
|
"acc_stderr,none": 0.053627116270410544 |
|
}, |
|
"arabicmmlu_high_economics": { |
|
"alias": " - High Economics", |
|
"acc,none": 0.5916666666666667, |
|
"acc_stderr,none": 0.02594171859862409 |
|
}, |
|
"arabicmmlu_high_geography": { |
|
"alias": " - High Geography", |
|
"acc,none": 0.4527938342967245, |
|
"acc_stderr,none": 0.015457397136918143 |
|
}, |
|
"arabicmmlu_middle_civics": { |
|
"alias": " - Middle Civics", |
|
"acc,none": 0.4957627118644068, |
|
"acc_stderr,none": 0.032615232401979485 |
|
}, |
|
"arabicmmlu_middle_economics": { |
|
"alias": " - Middle Economics", |
|
"acc,none": 0.7241379310344828, |
|
"acc_stderr,none": 0.04819560289115228 |
|
}, |
|
"arabicmmlu_middle_geography": { |
|
"alias": " - Middle Geography", |
|
"acc,none": 0.6360294117647058, |
|
"acc_stderr,none": 0.029227192460032025 |
|
}, |
|
"arabicmmlu_middle_social_science": { |
|
"alias": " - Middle Social Science", |
|
"acc,none": 0.4896265560165975, |
|
"acc_stderr,none": 0.0322679143822933 |
|
}, |
|
"arabicmmlu_primary_geography": { |
|
"alias": " - Primary Geography", |
|
"acc,none": 0.7017543859649122, |
|
"acc_stderr,none": 0.061134390564663986 |
|
}, |
|
"arabicmmlu_primary_social_science": { |
|
"alias": " - Primary Social Science", |
|
"acc,none": 0.7163120567375887, |
|
"acc_stderr,none": 0.01698968161579803 |
|
}, |
|
"arabicmmlu_univ_accounting": { |
|
"alias": " - Univ Accounting", |
|
"acc,none": 0.5540540540540541, |
|
"acc_stderr,none": 0.058177592923397636 |
|
}, |
|
"arabicmmlu_univ_economics": { |
|
"alias": " - Univ Economics", |
|
"acc,none": 0.5401459854014599, |
|
"acc_stderr,none": 0.04273622067714666 |
|
}, |
|
"arabicmmlu_univ_political_science": { |
|
"alias": " - Univ Political Science", |
|
"acc,none": 0.5238095238095238, |
|
"acc_stderr,none": 0.034546488100476766 |
|
}, |
|
"arabicmmlu_stem": { |
|
"acc,none": 0.5214531788286878, |
|
"acc_stderr,none": 0.008539561905594092, |
|
"alias": " - STEM" |
|
}, |
|
"arabicmmlu_high_biology": { |
|
"alias": " - High Biology", |
|
"acc,none": 0.42086586231369766, |
|
"acc_stderr,none": 0.013157097879519403 |
|
}, |
|
"arabicmmlu_high_computer_science": { |
|
"alias": " - High Computer Science", |
|
"acc,none": 0.5478927203065134, |
|
"acc_stderr,none": 0.030866105840801246 |
|
}, |
|
"arabicmmlu_high_physics": { |
|
"alias": " - High Physics", |
|
"acc,none": 0.38823529411764707, |
|
"acc_stderr,none": 0.03057897034303606 |
|
}, |
|
"arabicmmlu_middle_computer_science": { |
|
"alias": " - Middle Computer Science", |
|
"acc,none": 0.7777777777777778, |
|
"acc_stderr,none": 0.08153326507837146 |
|
}, |
|
"arabicmmlu_middle_natural_science": { |
|
"alias": " - Middle Natural Science", |
|
"acc,none": 0.6735537190082644, |
|
"acc_stderr,none": 0.030205321356519606 |
|
}, |
|
"arabicmmlu_primary_computer_science": { |
|
"alias": " - Primary Computer Science", |
|
"acc,none": 0.6894736842105263, |
|
"acc_stderr,none": 0.03365713545671698 |
|
}, |
|
"arabicmmlu_primary_math": { |
|
"alias": " - Primary Math", |
|
"acc,none": 0.5134474327628362, |
|
"acc_stderr,none": 0.024744734365196468 |
|
}, |
|
"arabicmmlu_primary_natural_science": { |
|
"alias": " - Primary Natural Science", |
|
"acc,none": 0.7767857142857143, |
|
"acc_stderr,none": 0.022750408778833355 |
|
}, |
|
"arabicmmlu_univ_computer_science": { |
|
"alias": " - Univ Computer Science", |
|
"acc,none": 0.6875, |
|
"acc_stderr,none": 0.058397074018894594 |
|
} |
|
}, |
|
"groups": { |
|
"arabicmmlu": { |
|
"acc,none": 0.5813905223106192, |
|
"acc_stderr,none": 0.003974457419363176, |
|
"alias": "arabicmmlu" |
|
}, |
|
"arabicmmlu_humanities": { |
|
"acc,none": 0.6207276736493936, |
|
"acc_stderr,none": 0.007676866448419673, |
|
"alias": " - Humanities" |
|
}, |
|
"arabicmmlu_language": { |
|
"acc,none": 0.5595382746051033, |
|
"acc_stderr,none": 0.011907567989279312, |
|
"alias": " - Language" |
|
}, |
|
"arabicmmlu_other": { |
|
"acc,none": 0.645330112721417, |
|
"acc_stderr,none": 0.009605570074720063, |
|
"alias": " - Other" |
|
}, |
|
"arabicmmlu_social_science": { |
|
"acc,none": 0.560216894977169, |
|
"acc_stderr,none": 0.00821187595080662, |
|
"alias": " - Social Science" |
|
}, |
|
"arabicmmlu_stem": { |
|
"acc,none": 0.5214531788286878, |
|
"acc_stderr,none": 0.008539561905594092, |
|
"alias": " - STEM" |
|
} |
|
}, |
|
"group_subtasks": { |
|
"arabicmmlu_language": [ |
|
"arabicmmlu_arabic_language_(general)", |
|
"arabicmmlu_high_arabic_language", |
|
"arabicmmlu_arabic_language_(grammar)", |
|
"arabicmmlu_primary_arabic_language", |
|
"arabicmmlu_middle_arabic_language" |
|
], |
|
"arabicmmlu_stem": [ |
|
"arabicmmlu_high_biology", |
|
"arabicmmlu_primary_computer_science", |
|
"arabicmmlu_primary_math", |
|
"arabicmmlu_high_physics", |
|
"arabicmmlu_middle_computer_science", |
|
"arabicmmlu_high_computer_science", |
|
"arabicmmlu_univ_computer_science", |
|
"arabicmmlu_primary_natural_science", |
|
"arabicmmlu_middle_natural_science" |
|
], |
|
"arabicmmlu_humanities": [ |
|
"arabicmmlu_middle_islamic_studies", |
|
"arabicmmlu_islamic_studies", |
|
"arabicmmlu_prof_law", |
|
"arabicmmlu_high_history", |
|
"arabicmmlu_primary_history", |
|
"arabicmmlu_high_philosophy", |
|
"arabicmmlu_primary_islamic_studies", |
|
"arabicmmlu_middle_history", |
|
"arabicmmlu_high_islamic_studies" |
|
], |
|
"arabicmmlu_social_science": [ |
|
"arabicmmlu_primary_geography", |
|
"arabicmmlu_high_economics", |
|
"arabicmmlu_middle_social_science", |
|
"arabicmmlu_middle_economics", |
|
"arabicmmlu_high_geography", |
|
"arabicmmlu_primary_social_science", |
|
"arabicmmlu_high_civics", |
|
"arabicmmlu_univ_political_science", |
|
"arabicmmlu_middle_geography", |
|
"arabicmmlu_middle_civics", |
|
"arabicmmlu_univ_economics", |
|
"arabicmmlu_univ_accounting" |
|
], |
|
"arabicmmlu_other": [ |
|
"arabicmmlu_univ_management", |
|
"arabicmmlu_primary_general_knowledge", |
|
"arabicmmlu_middle_general_knowledge", |
|
"arabicmmlu_general_knowledge", |
|
"arabicmmlu_driving_test" |
|
], |
|
"arabicmmlu": [ |
|
"arabicmmlu_other", |
|
"arabicmmlu_social_science", |
|
"arabicmmlu_humanities", |
|
"arabicmmlu_stem", |
|
"arabicmmlu_language" |
|
] |
|
}, |
|
"configs": { |
|
"arabicmmlu_arabic_language_(general)": { |
|
"task": "arabicmmlu_arabic_language_(general)", |
|
"task_alias": "Arabic Language (General)", |
|
"tag": "arabicmmlu_language_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Arabic Language (General)", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_arabic_language_(grammar)": { |
|
"task": "arabicmmlu_arabic_language_(grammar)", |
|
"task_alias": "Arabic Language (Grammar)", |
|
"tag": "arabicmmlu_language_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Arabic Language (Grammar)", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_driving_test": { |
|
"task": "arabicmmlu_driving_test", |
|
"task_alias": "Driving Test", |
|
"tag": "arabicmmlu_other_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Driving Test", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_general_knowledge": { |
|
"task": "arabicmmlu_general_knowledge", |
|
"task_alias": "General Knowledge", |
|
"tag": "arabicmmlu_other_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "General Knowledge", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_high_arabic_language": { |
|
"task": "arabicmmlu_high_arabic_language", |
|
"task_alias": "High Arabic Language", |
|
"tag": "arabicmmlu_language_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "High Arabic Language", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_high_biology": { |
|
"task": "arabicmmlu_high_biology", |
|
"task_alias": "High Biology", |
|
"tag": "arabicmmlu_stem_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "High Biology", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_high_civics": { |
|
"task": "arabicmmlu_high_civics", |
|
"task_alias": "High Civics", |
|
"tag": "arabicmmlu_social_science_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "High Civics", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_high_computer_science": { |
|
"task": "arabicmmlu_high_computer_science", |
|
"task_alias": "High Computer Science", |
|
"tag": "arabicmmlu_stem_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "High Computer Science", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_high_economics": { |
|
"task": "arabicmmlu_high_economics", |
|
"task_alias": "High Economics", |
|
"tag": "arabicmmlu_social_science_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "High Economics", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_high_geography": { |
|
"task": "arabicmmlu_high_geography", |
|
"task_alias": "High Geography", |
|
"tag": "arabicmmlu_social_science_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "High Geography", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_high_history": { |
|
"task": "arabicmmlu_high_history", |
|
"task_alias": "High History", |
|
"tag": "arabicmmlu_humanities_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "High History", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_high_islamic_studies": { |
|
"task": "arabicmmlu_high_islamic_studies", |
|
"task_alias": "High Islamic Studies", |
|
"tag": "arabicmmlu_humanities_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "High Islamic Studies", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_high_philosophy": { |
|
"task": "arabicmmlu_high_philosophy", |
|
"task_alias": "High Philosophy", |
|
"tag": "arabicmmlu_humanities_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "High Philosophy", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_high_physics": { |
|
"task": "arabicmmlu_high_physics", |
|
"task_alias": "High Physics", |
|
"tag": "arabicmmlu_stem_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "High Physics", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_islamic_studies": { |
|
"task": "arabicmmlu_islamic_studies", |
|
"task_alias": "Islamic Studies", |
|
"tag": "arabicmmlu_humanities_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Islamic Studies", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_middle_arabic_language": { |
|
"task": "arabicmmlu_middle_arabic_language", |
|
"task_alias": "Middle Arabic Language", |
|
"tag": "arabicmmlu_language_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Middle Arabic Language", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_middle_civics": { |
|
"task": "arabicmmlu_middle_civics", |
|
"task_alias": "Middle Civics", |
|
"tag": "arabicmmlu_social_science_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Middle Civics", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_middle_computer_science": { |
|
"task": "arabicmmlu_middle_computer_science", |
|
"task_alias": "Middle Computer Science", |
|
"tag": "arabicmmlu_stem_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Middle Computer Science", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_middle_economics": { |
|
"task": "arabicmmlu_middle_economics", |
|
"task_alias": "Middle Economics", |
|
"tag": "arabicmmlu_social_science_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Middle Economics", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_middle_general_knowledge": { |
|
"task": "arabicmmlu_middle_general_knowledge", |
|
"task_alias": "Middle General Knowledge", |
|
"tag": "arabicmmlu_other_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Middle General Knowledge", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_middle_geography": { |
|
"task": "arabicmmlu_middle_geography", |
|
"task_alias": "Middle Geography", |
|
"tag": "arabicmmlu_social_science_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Middle Geography", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_middle_history": { |
|
"task": "arabicmmlu_middle_history", |
|
"task_alias": "Middle History", |
|
"tag": "arabicmmlu_humanities_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Middle History", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_middle_islamic_studies": { |
|
"task": "arabicmmlu_middle_islamic_studies", |
|
"task_alias": "Middle Islamic Studies", |
|
"tag": "arabicmmlu_humanities_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Middle Islamic Studies", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_middle_natural_science": { |
|
"task": "arabicmmlu_middle_natural_science", |
|
"task_alias": "Middle Natural Science", |
|
"tag": "arabicmmlu_stem_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Middle Natural Science", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_middle_social_science": { |
|
"task": "arabicmmlu_middle_social_science", |
|
"task_alias": "Middle Social Science", |
|
"tag": "arabicmmlu_social_science_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Middle Social Science", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_primary_arabic_language": { |
|
"task": "arabicmmlu_primary_arabic_language", |
|
"task_alias": "Primary Arabic Language", |
|
"tag": "arabicmmlu_language_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Primary Arabic Language", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_primary_computer_science": { |
|
"task": "arabicmmlu_primary_computer_science", |
|
"task_alias": "Primary Computer Science", |
|
"tag": "arabicmmlu_stem_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Primary Computer Science", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_primary_general_knowledge": { |
|
"task": "arabicmmlu_primary_general_knowledge", |
|
"task_alias": "Primary General Knowledge", |
|
"tag": "arabicmmlu_other_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Primary General Knowledge", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_primary_geography": { |
|
"task": "arabicmmlu_primary_geography", |
|
"task_alias": "Primary Geography", |
|
"tag": "arabicmmlu_social_science_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Primary Geography", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_primary_history": { |
|
"task": "arabicmmlu_primary_history", |
|
"task_alias": "Primary History", |
|
"tag": "arabicmmlu_humanities_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Primary History", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_primary_islamic_studies": { |
|
"task": "arabicmmlu_primary_islamic_studies", |
|
"task_alias": "Primary Islamic Studies", |
|
"tag": "arabicmmlu_humanities_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Primary Islamic Studies", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_primary_math": { |
|
"task": "arabicmmlu_primary_math", |
|
"task_alias": "Primary Math", |
|
"tag": "arabicmmlu_stem_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Primary Math", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_primary_natural_science": { |
|
"task": "arabicmmlu_primary_natural_science", |
|
"task_alias": "Primary Natural Science", |
|
"tag": "arabicmmlu_stem_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Primary Natural Science", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_primary_social_science": { |
|
"task": "arabicmmlu_primary_social_science", |
|
"task_alias": "Primary Social Science", |
|
"tag": "arabicmmlu_social_science_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Primary Social Science", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_prof_law": { |
|
"task": "arabicmmlu_prof_law", |
|
"task_alias": "Prof Law", |
|
"tag": "arabicmmlu_humanities_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Prof Law", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_univ_accounting": { |
|
"task": "arabicmmlu_univ_accounting", |
|
"task_alias": "Univ Accounting", |
|
"tag": "arabicmmlu_social_science_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Univ Accounting", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_univ_computer_science": { |
|
"task": "arabicmmlu_univ_computer_science", |
|
"task_alias": "Univ Computer Science", |
|
"tag": "arabicmmlu_stem_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Univ Computer Science", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_univ_economics": { |
|
"task": "arabicmmlu_univ_economics", |
|
"task_alias": "Univ Economics", |
|
"tag": "arabicmmlu_social_science_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Univ Economics", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_univ_management": { |
|
"task": "arabicmmlu_univ_management", |
|
"task_alias": "Univ Management", |
|
"tag": "arabicmmlu_other_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Univ Management", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"arabicmmlu_univ_political_science": { |
|
"task": "arabicmmlu_univ_political_science", |
|
"task_alias": "Univ Political Science", |
|
"tag": "arabicmmlu_social_science_tasks", |
|
"dataset_path": "yazeed7/ArabicMMLU", |
|
"dataset_name": "Univ Political Science", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", |
|
"doc_to_target": "Answer Key", |
|
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
} |
|
}, |
|
"versions": { |
|
"arabicmmlu": 0, |
|
"arabicmmlu_arabic_language_(general)": 0.0, |
|
"arabicmmlu_arabic_language_(grammar)": 0.0, |
|
"arabicmmlu_driving_test": 0.0, |
|
"arabicmmlu_general_knowledge": 0.0, |
|
"arabicmmlu_high_arabic_language": 0.0, |
|
"arabicmmlu_high_biology": 0.0, |
|
"arabicmmlu_high_civics": 0.0, |
|
"arabicmmlu_high_computer_science": 0.0, |
|
"arabicmmlu_high_economics": 0.0, |
|
"arabicmmlu_high_geography": 0.0, |
|
"arabicmmlu_high_history": 0.0, |
|
"arabicmmlu_high_islamic_studies": 0.0, |
|
"arabicmmlu_high_philosophy": 0.0, |
|
"arabicmmlu_high_physics": 0.0, |
|
"arabicmmlu_humanities": 0, |
|
"arabicmmlu_islamic_studies": 0.0, |
|
"arabicmmlu_language": 0, |
|
"arabicmmlu_middle_arabic_language": 0.0, |
|
"arabicmmlu_middle_civics": 0.0, |
|
"arabicmmlu_middle_computer_science": 0.0, |
|
"arabicmmlu_middle_economics": 0.0, |
|
"arabicmmlu_middle_general_knowledge": 0.0, |
|
"arabicmmlu_middle_geography": 0.0, |
|
"arabicmmlu_middle_history": 0.0, |
|
"arabicmmlu_middle_islamic_studies": 0.0, |
|
"arabicmmlu_middle_natural_science": 0.0, |
|
"arabicmmlu_middle_social_science": 0.0, |
|
"arabicmmlu_other": 0, |
|
"arabicmmlu_primary_arabic_language": 0.0, |
|
"arabicmmlu_primary_computer_science": 0.0, |
|
"arabicmmlu_primary_general_knowledge": 0.0, |
|
"arabicmmlu_primary_geography": 0.0, |
|
"arabicmmlu_primary_history": 0.0, |
|
"arabicmmlu_primary_islamic_studies": 0.0, |
|
"arabicmmlu_primary_math": 0.0, |
|
"arabicmmlu_primary_natural_science": 0.0, |
|
"arabicmmlu_primary_social_science": 0.0, |
|
"arabicmmlu_prof_law": 0.0, |
|
"arabicmmlu_social_science": 0, |
|
"arabicmmlu_stem": 0, |
|
"arabicmmlu_univ_accounting": 0.0, |
|
"arabicmmlu_univ_computer_science": 0.0, |
|
"arabicmmlu_univ_economics": 0.0, |
|
"arabicmmlu_univ_management": 0.0, |
|
"arabicmmlu_univ_political_science": 0.0 |
|
}, |
|
"n-shot": { |
|
"arabicmmlu_arabic_language_(general)": 0, |
|
"arabicmmlu_arabic_language_(grammar)": 0, |
|
"arabicmmlu_driving_test": 0, |
|
"arabicmmlu_general_knowledge": 0, |
|
"arabicmmlu_high_arabic_language": 0, |
|
"arabicmmlu_high_biology": 0, |
|
"arabicmmlu_high_civics": 0, |
|
"arabicmmlu_high_computer_science": 0, |
|
"arabicmmlu_high_economics": 0, |
|
"arabicmmlu_high_geography": 0, |
|
"arabicmmlu_high_history": 0, |
|
"arabicmmlu_high_islamic_studies": 0, |
|
"arabicmmlu_high_philosophy": 0, |
|
"arabicmmlu_high_physics": 0, |
|
"arabicmmlu_islamic_studies": 0, |
|
"arabicmmlu_middle_arabic_language": 0, |
|
"arabicmmlu_middle_civics": 0, |
|
"arabicmmlu_middle_computer_science": 0, |
|
"arabicmmlu_middle_economics": 0, |
|
"arabicmmlu_middle_general_knowledge": 0, |
|
"arabicmmlu_middle_geography": 0, |
|
"arabicmmlu_middle_history": 0, |
|
"arabicmmlu_middle_islamic_studies": 0, |
|
"arabicmmlu_middle_natural_science": 0, |
|
"arabicmmlu_middle_social_science": 0, |
|
"arabicmmlu_primary_arabic_language": 0, |
|
"arabicmmlu_primary_computer_science": 0, |
|
"arabicmmlu_primary_general_knowledge": 0, |
|
"arabicmmlu_primary_geography": 0, |
|
"arabicmmlu_primary_history": 0, |
|
"arabicmmlu_primary_islamic_studies": 0, |
|
"arabicmmlu_primary_math": 0, |
|
"arabicmmlu_primary_natural_science": 0, |
|
"arabicmmlu_primary_social_science": 0, |
|
"arabicmmlu_prof_law": 0, |
|
"arabicmmlu_univ_accounting": 0, |
|
"arabicmmlu_univ_computer_science": 0, |
|
"arabicmmlu_univ_economics": 0, |
|
"arabicmmlu_univ_management": 0, |
|
"arabicmmlu_univ_political_science": 0 |
|
}, |
|
"higher_is_better": { |
|
"arabicmmlu": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_arabic_language_(general)": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_arabic_language_(grammar)": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_driving_test": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_general_knowledge": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_high_arabic_language": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_high_biology": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_high_civics": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_high_computer_science": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_high_economics": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_high_geography": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_high_history": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_high_islamic_studies": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_high_philosophy": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_high_physics": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_humanities": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_islamic_studies": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_language": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_middle_arabic_language": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_middle_civics": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_middle_computer_science": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_middle_economics": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_middle_general_knowledge": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_middle_geography": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_middle_history": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_middle_islamic_studies": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_middle_natural_science": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_middle_social_science": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_other": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_primary_arabic_language": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_primary_computer_science": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_primary_general_knowledge": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_primary_geography": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_primary_history": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_primary_islamic_studies": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_primary_math": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_primary_natural_science": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_primary_social_science": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_prof_law": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_social_science": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_stem": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_univ_accounting": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_univ_computer_science": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_univ_economics": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_univ_management": { |
|
"acc": true |
|
}, |
|
"arabicmmlu_univ_political_science": { |
|
"acc": true |
|
} |
|
}, |
|
"n-samples": { |
|
"arabicmmlu_univ_management": { |
|
"original": 75, |
|
"effective": 75 |
|
}, |
|
"arabicmmlu_primary_general_knowledge": { |
|
"original": 162, |
|
"effective": 162 |
|
}, |
|
"arabicmmlu_middle_general_knowledge": { |
|
"original": 172, |
|
"effective": 172 |
|
}, |
|
"arabicmmlu_general_knowledge": { |
|
"original": 864, |
|
"effective": 864 |
|
}, |
|
"arabicmmlu_driving_test": { |
|
"original": 1211, |
|
"effective": 1211 |
|
}, |
|
"arabicmmlu_primary_geography": { |
|
"original": 57, |
|
"effective": 57 |
|
}, |
|
"arabicmmlu_high_economics": { |
|
"original": 360, |
|
"effective": 360 |
|
}, |
|
"arabicmmlu_middle_social_science": { |
|
"original": 241, |
|
"effective": 241 |
|
}, |
|
"arabicmmlu_middle_economics": { |
|
"original": 87, |
|
"effective": 87 |
|
}, |
|
"arabicmmlu_high_geography": { |
|
"original": 1038, |
|
"effective": 1038 |
|
}, |
|
"arabicmmlu_primary_social_science": { |
|
"original": 705, |
|
"effective": 705 |
|
}, |
|
"arabicmmlu_high_civics": { |
|
"original": 87, |
|
"effective": 87 |
|
}, |
|
"arabicmmlu_univ_political_science": { |
|
"original": 210, |
|
"effective": 210 |
|
}, |
|
"arabicmmlu_middle_geography": { |
|
"original": 272, |
|
"effective": 272 |
|
}, |
|
"arabicmmlu_middle_civics": { |
|
"original": 236, |
|
"effective": 236 |
|
}, |
|
"arabicmmlu_univ_economics": { |
|
"original": 137, |
|
"effective": 137 |
|
}, |
|
"arabicmmlu_univ_accounting": { |
|
"original": 74, |
|
"effective": 74 |
|
}, |
|
"arabicmmlu_middle_islamic_studies": { |
|
"original": 238, |
|
"effective": 238 |
|
}, |
|
"arabicmmlu_islamic_studies": { |
|
"original": 639, |
|
"effective": 639 |
|
}, |
|
"arabicmmlu_prof_law": { |
|
"original": 314, |
|
"effective": 314 |
|
}, |
|
"arabicmmlu_high_history": { |
|
"original": 760, |
|
"effective": 760 |
|
}, |
|
"arabicmmlu_primary_history": { |
|
"original": 102, |
|
"effective": 102 |
|
}, |
|
"arabicmmlu_high_philosophy": { |
|
"original": 39, |
|
"effective": 39 |
|
}, |
|
"arabicmmlu_primary_islamic_studies": { |
|
"original": 999, |
|
"effective": 999 |
|
}, |
|
"arabicmmlu_middle_history": { |
|
"original": 203, |
|
"effective": 203 |
|
}, |
|
"arabicmmlu_high_islamic_studies": { |
|
"original": 334, |
|
"effective": 334 |
|
}, |
|
"arabicmmlu_high_biology": { |
|
"original": 1409, |
|
"effective": 1409 |
|
}, |
|
"arabicmmlu_primary_computer_science": { |
|
"original": 190, |
|
"effective": 190 |
|
}, |
|
"arabicmmlu_primary_math": { |
|
"original": 409, |
|
"effective": 409 |
|
}, |
|
"arabicmmlu_high_physics": { |
|
"original": 255, |
|
"effective": 255 |
|
}, |
|
"arabicmmlu_middle_computer_science": { |
|
"original": 27, |
|
"effective": 27 |
|
}, |
|
"arabicmmlu_high_computer_science": { |
|
"original": 261, |
|
"effective": 261 |
|
}, |
|
"arabicmmlu_univ_computer_science": { |
|
"original": 64, |
|
"effective": 64 |
|
}, |
|
"arabicmmlu_primary_natural_science": { |
|
"original": 336, |
|
"effective": 336 |
|
}, |
|
"arabicmmlu_middle_natural_science": { |
|
"original": 242, |
|
"effective": 242 |
|
}, |
|
"arabicmmlu_arabic_language_(general)": { |
|
"original": 612, |
|
"effective": 612 |
|
}, |
|
"arabicmmlu_high_arabic_language": { |
|
"original": 390, |
|
"effective": 390 |
|
}, |
|
"arabicmmlu_arabic_language_(grammar)": { |
|
"original": 365, |
|
"effective": 365 |
|
}, |
|
"arabicmmlu_primary_arabic_language": { |
|
"original": 252, |
|
"effective": 252 |
|
}, |
|
"arabicmmlu_middle_arabic_language": { |
|
"original": 27, |
|
"effective": 27 |
|
} |
|
}, |
|
"config": { |
|
"model": "vllm", |
|
"model_args": "pretrained=inceptionai/jais-family-13b-chat,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.4,download_dir=/tmp", |
|
"batch_size": 1, |
|
"batch_sizes": [], |
|
"device": null, |
|
"use_cache": null, |
|
"limit": null, |
|
"bootstrap_iters": 100000, |
|
"gen_kwargs": null, |
|
"random_seed": 0, |
|
"numpy_seed": 1234, |
|
"torch_seed": 1234, |
|
"fewshot_seed": 1234 |
|
}, |
|
"git_hash": "8e1bd48d", |
|
"date": 1735755943.4155445, |
|
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect", |
|
"transformers_version": "4.47.1", |
|
"upper_git_hash": "f64fe2f2a86055aaecced603b56097fd79201711", |
|
"tokenizer_pad_token": [ |
|
"<|endoftext|>", |
|
"0" |
|
], |
|
"tokenizer_eos_token": [ |
|
"<|endoftext|>", |
|
"0" |
|
], |
|
"tokenizer_bos_token": [ |
|
"<|endoftext|>", |
|
"0" |
|
], |
|
"eot_token_id": 0, |
|
"max_length": 2048, |
|
"task_hashes": {}, |
|
"model_source": "vllm", |
|
"model_name": "inceptionai/jais-family-13b-chat", |
|
"model_name_sanitized": "inceptionai__jais-family-13b-chat", |
|
"system_instruction": null, |
|
"system_instruction_sha": null, |
|
"fewshot_as_multiturn": false, |
|
"chat_template": null, |
|
"chat_template_sha": null, |
|
"start_time": 9749.039771719, |
|
"end_time": 10388.251187622, |
|
"total_evaluation_time_seconds": "639.2114159029989" |
|
} |