naazahrani's picture
Adding evaluation results
661e616 verified
{
"results": {
"arabicmmlu": {
"acc,none": 0.5813905223106192,
"acc_stderr,none": 0.003974457419363176,
"alias": "arabicmmlu"
},
"arabicmmlu_humanities": {
"acc,none": 0.6207276736493936,
"acc_stderr,none": 0.007676866448419673,
"alias": " - Humanities"
},
"arabicmmlu_high_history": {
"alias": " - High History",
"acc,none": 0.4605263157894737,
"acc_stderr,none": 0.01809220376192219
},
"arabicmmlu_high_islamic_studies": {
"alias": " - High Islamic Studies",
"acc,none": 0.6167664670658682,
"acc_stderr,none": 0.026642195538092498
},
"arabicmmlu_high_philosophy": {
"alias": " - High Philosophy",
"acc,none": 0.6666666666666666,
"acc_stderr,none": 0.07647191129018725
},
"arabicmmlu_islamic_studies": {
"alias": " - Islamic Studies",
"acc,none": 0.6071987480438185,
"acc_stderr,none": 0.01933488200369804
},
"arabicmmlu_middle_history": {
"alias": " - Middle History",
"acc,none": 0.6650246305418719,
"acc_stderr,none": 0.033208527423483104
},
"arabicmmlu_middle_islamic_studies": {
"alias": " - Middle Islamic Studies",
"acc,none": 0.6428571428571429,
"acc_stderr,none": 0.031124619309328177
},
"arabicmmlu_primary_history": {
"alias": " - Primary History",
"acc,none": 0.6862745098039216,
"acc_stderr,none": 0.04617034827006718
},
"arabicmmlu_primary_islamic_studies": {
"alias": " - Primary Islamic Studies",
"acc,none": 0.8138138138138138,
"acc_stderr,none": 0.012321710081733966
},
"arabicmmlu_prof_law": {
"alias": " - Prof Law",
"acc,none": 0.3535031847133758,
"acc_stderr,none": 0.027021390361997532
},
"arabicmmlu_language": {
"acc,none": 0.5595382746051033,
"acc_stderr,none": 0.011907567989279312,
"alias": " - Language"
},
"arabicmmlu_arabic_language_(general)": {
"alias": " - Arabic Language (General)",
"acc,none": 0.6748366013071896,
"acc_stderr,none": 0.018950886770806315
},
"arabicmmlu_arabic_language_(grammar)": {
"alias": " - Arabic Language (Grammar)",
"acc,none": 0.5287671232876713,
"acc_stderr,none": 0.02616370969480108
},
"arabicmmlu_high_arabic_language": {
"alias": " - High Arabic Language",
"acc,none": 0.37435897435897436,
"acc_stderr,none": 0.024537591572830496
},
"arabicmmlu_middle_arabic_language": {
"alias": " - Middle Arabic Language",
"acc,none": 0.5185185185185185,
"acc_stderr,none": 0.09799078929868857
},
"arabicmmlu_primary_arabic_language": {
"alias": " - Primary Arabic Language",
"acc,none": 0.6150793650793651,
"acc_stderr,none": 0.03071243955075999
},
"arabicmmlu_other": {
"acc,none": 0.645330112721417,
"acc_stderr,none": 0.009605570074720063,
"alias": " - Other"
},
"arabicmmlu_driving_test": {
"alias": " - Driving Test",
"acc,none": 0.6457473162675474,
"acc_stderr,none": 0.013749762426221467
},
"arabicmmlu_general_knowledge": {
"alias": " - General Knowledge",
"acc,none": 0.6516203703703703,
"acc_stderr,none": 0.01621878455756233
},
"arabicmmlu_middle_general_knowledge": {
"alias": " - Middle General Knowledge",
"acc,none": 0.6162790697674418,
"acc_stderr,none": 0.03718762118238795
},
"arabicmmlu_primary_general_knowledge": {
"alias": " - Primary General Knowledge",
"acc,none": 0.6604938271604939,
"acc_stderr,none": 0.03732031330740126
},
"arabicmmlu_univ_management": {
"alias": " - Univ Management",
"acc,none": 0.6,
"acc_stderr,none": 0.05694947974514993
},
"arabicmmlu_social_science": {
"acc,none": 0.560216894977169,
"acc_stderr,none": 0.00821187595080662,
"alias": " - Social Science"
},
"arabicmmlu_high_civics": {
"alias": " - High Civics",
"acc,none": 0.4482758620689655,
"acc_stderr,none": 0.053627116270410544
},
"arabicmmlu_high_economics": {
"alias": " - High Economics",
"acc,none": 0.5916666666666667,
"acc_stderr,none": 0.02594171859862409
},
"arabicmmlu_high_geography": {
"alias": " - High Geography",
"acc,none": 0.4527938342967245,
"acc_stderr,none": 0.015457397136918143
},
"arabicmmlu_middle_civics": {
"alias": " - Middle Civics",
"acc,none": 0.4957627118644068,
"acc_stderr,none": 0.032615232401979485
},
"arabicmmlu_middle_economics": {
"alias": " - Middle Economics",
"acc,none": 0.7241379310344828,
"acc_stderr,none": 0.04819560289115228
},
"arabicmmlu_middle_geography": {
"alias": " - Middle Geography",
"acc,none": 0.6360294117647058,
"acc_stderr,none": 0.029227192460032025
},
"arabicmmlu_middle_social_science": {
"alias": " - Middle Social Science",
"acc,none": 0.4896265560165975,
"acc_stderr,none": 0.0322679143822933
},
"arabicmmlu_primary_geography": {
"alias": " - Primary Geography",
"acc,none": 0.7017543859649122,
"acc_stderr,none": 0.061134390564663986
},
"arabicmmlu_primary_social_science": {
"alias": " - Primary Social Science",
"acc,none": 0.7163120567375887,
"acc_stderr,none": 0.01698968161579803
},
"arabicmmlu_univ_accounting": {
"alias": " - Univ Accounting",
"acc,none": 0.5540540540540541,
"acc_stderr,none": 0.058177592923397636
},
"arabicmmlu_univ_economics": {
"alias": " - Univ Economics",
"acc,none": 0.5401459854014599,
"acc_stderr,none": 0.04273622067714666
},
"arabicmmlu_univ_political_science": {
"alias": " - Univ Political Science",
"acc,none": 0.5238095238095238,
"acc_stderr,none": 0.034546488100476766
},
"arabicmmlu_stem": {
"acc,none": 0.5214531788286878,
"acc_stderr,none": 0.008539561905594092,
"alias": " - STEM"
},
"arabicmmlu_high_biology": {
"alias": " - High Biology",
"acc,none": 0.42086586231369766,
"acc_stderr,none": 0.013157097879519403
},
"arabicmmlu_high_computer_science": {
"alias": " - High Computer Science",
"acc,none": 0.5478927203065134,
"acc_stderr,none": 0.030866105840801246
},
"arabicmmlu_high_physics": {
"alias": " - High Physics",
"acc,none": 0.38823529411764707,
"acc_stderr,none": 0.03057897034303606
},
"arabicmmlu_middle_computer_science": {
"alias": " - Middle Computer Science",
"acc,none": 0.7777777777777778,
"acc_stderr,none": 0.08153326507837146
},
"arabicmmlu_middle_natural_science": {
"alias": " - Middle Natural Science",
"acc,none": 0.6735537190082644,
"acc_stderr,none": 0.030205321356519606
},
"arabicmmlu_primary_computer_science": {
"alias": " - Primary Computer Science",
"acc,none": 0.6894736842105263,
"acc_stderr,none": 0.03365713545671698
},
"arabicmmlu_primary_math": {
"alias": " - Primary Math",
"acc,none": 0.5134474327628362,
"acc_stderr,none": 0.024744734365196468
},
"arabicmmlu_primary_natural_science": {
"alias": " - Primary Natural Science",
"acc,none": 0.7767857142857143,
"acc_stderr,none": 0.022750408778833355
},
"arabicmmlu_univ_computer_science": {
"alias": " - Univ Computer Science",
"acc,none": 0.6875,
"acc_stderr,none": 0.058397074018894594
}
},
"groups": {
"arabicmmlu": {
"acc,none": 0.5813905223106192,
"acc_stderr,none": 0.003974457419363176,
"alias": "arabicmmlu"
},
"arabicmmlu_humanities": {
"acc,none": 0.6207276736493936,
"acc_stderr,none": 0.007676866448419673,
"alias": " - Humanities"
},
"arabicmmlu_language": {
"acc,none": 0.5595382746051033,
"acc_stderr,none": 0.011907567989279312,
"alias": " - Language"
},
"arabicmmlu_other": {
"acc,none": 0.645330112721417,
"acc_stderr,none": 0.009605570074720063,
"alias": " - Other"
},
"arabicmmlu_social_science": {
"acc,none": 0.560216894977169,
"acc_stderr,none": 0.00821187595080662,
"alias": " - Social Science"
},
"arabicmmlu_stem": {
"acc,none": 0.5214531788286878,
"acc_stderr,none": 0.008539561905594092,
"alias": " - STEM"
}
},
"group_subtasks": {
"arabicmmlu_language": [
"arabicmmlu_arabic_language_(general)",
"arabicmmlu_high_arabic_language",
"arabicmmlu_arabic_language_(grammar)",
"arabicmmlu_primary_arabic_language",
"arabicmmlu_middle_arabic_language"
],
"arabicmmlu_stem": [
"arabicmmlu_high_biology",
"arabicmmlu_primary_computer_science",
"arabicmmlu_primary_math",
"arabicmmlu_high_physics",
"arabicmmlu_middle_computer_science",
"arabicmmlu_high_computer_science",
"arabicmmlu_univ_computer_science",
"arabicmmlu_primary_natural_science",
"arabicmmlu_middle_natural_science"
],
"arabicmmlu_humanities": [
"arabicmmlu_middle_islamic_studies",
"arabicmmlu_islamic_studies",
"arabicmmlu_prof_law",
"arabicmmlu_high_history",
"arabicmmlu_primary_history",
"arabicmmlu_high_philosophy",
"arabicmmlu_primary_islamic_studies",
"arabicmmlu_middle_history",
"arabicmmlu_high_islamic_studies"
],
"arabicmmlu_social_science": [
"arabicmmlu_primary_geography",
"arabicmmlu_high_economics",
"arabicmmlu_middle_social_science",
"arabicmmlu_middle_economics",
"arabicmmlu_high_geography",
"arabicmmlu_primary_social_science",
"arabicmmlu_high_civics",
"arabicmmlu_univ_political_science",
"arabicmmlu_middle_geography",
"arabicmmlu_middle_civics",
"arabicmmlu_univ_economics",
"arabicmmlu_univ_accounting"
],
"arabicmmlu_other": [
"arabicmmlu_univ_management",
"arabicmmlu_primary_general_knowledge",
"arabicmmlu_middle_general_knowledge",
"arabicmmlu_general_knowledge",
"arabicmmlu_driving_test"
],
"arabicmmlu": [
"arabicmmlu_other",
"arabicmmlu_social_science",
"arabicmmlu_humanities",
"arabicmmlu_stem",
"arabicmmlu_language"
]
},
"configs": {
"arabicmmlu_arabic_language_(general)": {
"task": "arabicmmlu_arabic_language_(general)",
"task_alias": "Arabic Language (General)",
"tag": "arabicmmlu_language_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Arabic Language (General)",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_arabic_language_(grammar)": {
"task": "arabicmmlu_arabic_language_(grammar)",
"task_alias": "Arabic Language (Grammar)",
"tag": "arabicmmlu_language_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Arabic Language (Grammar)",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_driving_test": {
"task": "arabicmmlu_driving_test",
"task_alias": "Driving Test",
"tag": "arabicmmlu_other_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Driving Test",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_general_knowledge": {
"task": "arabicmmlu_general_knowledge",
"task_alias": "General Knowledge",
"tag": "arabicmmlu_other_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "General Knowledge",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_high_arabic_language": {
"task": "arabicmmlu_high_arabic_language",
"task_alias": "High Arabic Language",
"tag": "arabicmmlu_language_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "High Arabic Language",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_high_biology": {
"task": "arabicmmlu_high_biology",
"task_alias": "High Biology",
"tag": "arabicmmlu_stem_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "High Biology",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_high_civics": {
"task": "arabicmmlu_high_civics",
"task_alias": "High Civics",
"tag": "arabicmmlu_social_science_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "High Civics",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_high_computer_science": {
"task": "arabicmmlu_high_computer_science",
"task_alias": "High Computer Science",
"tag": "arabicmmlu_stem_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "High Computer Science",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_high_economics": {
"task": "arabicmmlu_high_economics",
"task_alias": "High Economics",
"tag": "arabicmmlu_social_science_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "High Economics",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_high_geography": {
"task": "arabicmmlu_high_geography",
"task_alias": "High Geography",
"tag": "arabicmmlu_social_science_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "High Geography",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_high_history": {
"task": "arabicmmlu_high_history",
"task_alias": "High History",
"tag": "arabicmmlu_humanities_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "High History",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_high_islamic_studies": {
"task": "arabicmmlu_high_islamic_studies",
"task_alias": "High Islamic Studies",
"tag": "arabicmmlu_humanities_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "High Islamic Studies",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_high_philosophy": {
"task": "arabicmmlu_high_philosophy",
"task_alias": "High Philosophy",
"tag": "arabicmmlu_humanities_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "High Philosophy",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_high_physics": {
"task": "arabicmmlu_high_physics",
"task_alias": "High Physics",
"tag": "arabicmmlu_stem_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "High Physics",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_islamic_studies": {
"task": "arabicmmlu_islamic_studies",
"task_alias": "Islamic Studies",
"tag": "arabicmmlu_humanities_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Islamic Studies",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_middle_arabic_language": {
"task": "arabicmmlu_middle_arabic_language",
"task_alias": "Middle Arabic Language",
"tag": "arabicmmlu_language_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Middle Arabic Language",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_middle_civics": {
"task": "arabicmmlu_middle_civics",
"task_alias": "Middle Civics",
"tag": "arabicmmlu_social_science_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Middle Civics",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_middle_computer_science": {
"task": "arabicmmlu_middle_computer_science",
"task_alias": "Middle Computer Science",
"tag": "arabicmmlu_stem_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Middle Computer Science",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_middle_economics": {
"task": "arabicmmlu_middle_economics",
"task_alias": "Middle Economics",
"tag": "arabicmmlu_social_science_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Middle Economics",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_middle_general_knowledge": {
"task": "arabicmmlu_middle_general_knowledge",
"task_alias": "Middle General Knowledge",
"tag": "arabicmmlu_other_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Middle General Knowledge",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_middle_geography": {
"task": "arabicmmlu_middle_geography",
"task_alias": "Middle Geography",
"tag": "arabicmmlu_social_science_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Middle Geography",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_middle_history": {
"task": "arabicmmlu_middle_history",
"task_alias": "Middle History",
"tag": "arabicmmlu_humanities_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Middle History",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_middle_islamic_studies": {
"task": "arabicmmlu_middle_islamic_studies",
"task_alias": "Middle Islamic Studies",
"tag": "arabicmmlu_humanities_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Middle Islamic Studies",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_middle_natural_science": {
"task": "arabicmmlu_middle_natural_science",
"task_alias": "Middle Natural Science",
"tag": "arabicmmlu_stem_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Middle Natural Science",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_middle_social_science": {
"task": "arabicmmlu_middle_social_science",
"task_alias": "Middle Social Science",
"tag": "arabicmmlu_social_science_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Middle Social Science",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_primary_arabic_language": {
"task": "arabicmmlu_primary_arabic_language",
"task_alias": "Primary Arabic Language",
"tag": "arabicmmlu_language_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Primary Arabic Language",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_primary_computer_science": {
"task": "arabicmmlu_primary_computer_science",
"task_alias": "Primary Computer Science",
"tag": "arabicmmlu_stem_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Primary Computer Science",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_primary_general_knowledge": {
"task": "arabicmmlu_primary_general_knowledge",
"task_alias": "Primary General Knowledge",
"tag": "arabicmmlu_other_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Primary General Knowledge",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_primary_geography": {
"task": "arabicmmlu_primary_geography",
"task_alias": "Primary Geography",
"tag": "arabicmmlu_social_science_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Primary Geography",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_primary_history": {
"task": "arabicmmlu_primary_history",
"task_alias": "Primary History",
"tag": "arabicmmlu_humanities_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Primary History",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_primary_islamic_studies": {
"task": "arabicmmlu_primary_islamic_studies",
"task_alias": "Primary Islamic Studies",
"tag": "arabicmmlu_humanities_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Primary Islamic Studies",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_primary_math": {
"task": "arabicmmlu_primary_math",
"task_alias": "Primary Math",
"tag": "arabicmmlu_stem_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Primary Math",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_primary_natural_science": {
"task": "arabicmmlu_primary_natural_science",
"task_alias": "Primary Natural Science",
"tag": "arabicmmlu_stem_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Primary Natural Science",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_primary_social_science": {
"task": "arabicmmlu_primary_social_science",
"task_alias": "Primary Social Science",
"tag": "arabicmmlu_social_science_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Primary Social Science",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_prof_law": {
"task": "arabicmmlu_prof_law",
"task_alias": "Prof Law",
"tag": "arabicmmlu_humanities_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Prof Law",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_univ_accounting": {
"task": "arabicmmlu_univ_accounting",
"task_alias": "Univ Accounting",
"tag": "arabicmmlu_social_science_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Univ Accounting",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_univ_computer_science": {
"task": "arabicmmlu_univ_computer_science",
"task_alias": "Univ Computer Science",
"tag": "arabicmmlu_stem_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Univ Computer Science",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_univ_economics": {
"task": "arabicmmlu_univ_economics",
"task_alias": "Univ Economics",
"tag": "arabicmmlu_social_science_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Univ Economics",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_univ_management": {
"task": "arabicmmlu_univ_management",
"task_alias": "Univ Management",
"tag": "arabicmmlu_other_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Univ Management",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"arabicmmlu_univ_political_science": {
"task": "arabicmmlu_univ_political_science",
"task_alias": "Univ Political Science",
"tag": "arabicmmlu_social_science_tasks",
"dataset_path": "yazeed7/ArabicMMLU",
"dataset_name": "Univ Political Science",
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n",
"doc_to_target": "Answer Key",
"doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
}
},
"versions": {
"arabicmmlu": 0,
"arabicmmlu_arabic_language_(general)": 0.0,
"arabicmmlu_arabic_language_(grammar)": 0.0,
"arabicmmlu_driving_test": 0.0,
"arabicmmlu_general_knowledge": 0.0,
"arabicmmlu_high_arabic_language": 0.0,
"arabicmmlu_high_biology": 0.0,
"arabicmmlu_high_civics": 0.0,
"arabicmmlu_high_computer_science": 0.0,
"arabicmmlu_high_economics": 0.0,
"arabicmmlu_high_geography": 0.0,
"arabicmmlu_high_history": 0.0,
"arabicmmlu_high_islamic_studies": 0.0,
"arabicmmlu_high_philosophy": 0.0,
"arabicmmlu_high_physics": 0.0,
"arabicmmlu_humanities": 0,
"arabicmmlu_islamic_studies": 0.0,
"arabicmmlu_language": 0,
"arabicmmlu_middle_arabic_language": 0.0,
"arabicmmlu_middle_civics": 0.0,
"arabicmmlu_middle_computer_science": 0.0,
"arabicmmlu_middle_economics": 0.0,
"arabicmmlu_middle_general_knowledge": 0.0,
"arabicmmlu_middle_geography": 0.0,
"arabicmmlu_middle_history": 0.0,
"arabicmmlu_middle_islamic_studies": 0.0,
"arabicmmlu_middle_natural_science": 0.0,
"arabicmmlu_middle_social_science": 0.0,
"arabicmmlu_other": 0,
"arabicmmlu_primary_arabic_language": 0.0,
"arabicmmlu_primary_computer_science": 0.0,
"arabicmmlu_primary_general_knowledge": 0.0,
"arabicmmlu_primary_geography": 0.0,
"arabicmmlu_primary_history": 0.0,
"arabicmmlu_primary_islamic_studies": 0.0,
"arabicmmlu_primary_math": 0.0,
"arabicmmlu_primary_natural_science": 0.0,
"arabicmmlu_primary_social_science": 0.0,
"arabicmmlu_prof_law": 0.0,
"arabicmmlu_social_science": 0,
"arabicmmlu_stem": 0,
"arabicmmlu_univ_accounting": 0.0,
"arabicmmlu_univ_computer_science": 0.0,
"arabicmmlu_univ_economics": 0.0,
"arabicmmlu_univ_management": 0.0,
"arabicmmlu_univ_political_science": 0.0
},
"n-shot": {
"arabicmmlu_arabic_language_(general)": 0,
"arabicmmlu_arabic_language_(grammar)": 0,
"arabicmmlu_driving_test": 0,
"arabicmmlu_general_knowledge": 0,
"arabicmmlu_high_arabic_language": 0,
"arabicmmlu_high_biology": 0,
"arabicmmlu_high_civics": 0,
"arabicmmlu_high_computer_science": 0,
"arabicmmlu_high_economics": 0,
"arabicmmlu_high_geography": 0,
"arabicmmlu_high_history": 0,
"arabicmmlu_high_islamic_studies": 0,
"arabicmmlu_high_philosophy": 0,
"arabicmmlu_high_physics": 0,
"arabicmmlu_islamic_studies": 0,
"arabicmmlu_middle_arabic_language": 0,
"arabicmmlu_middle_civics": 0,
"arabicmmlu_middle_computer_science": 0,
"arabicmmlu_middle_economics": 0,
"arabicmmlu_middle_general_knowledge": 0,
"arabicmmlu_middle_geography": 0,
"arabicmmlu_middle_history": 0,
"arabicmmlu_middle_islamic_studies": 0,
"arabicmmlu_middle_natural_science": 0,
"arabicmmlu_middle_social_science": 0,
"arabicmmlu_primary_arabic_language": 0,
"arabicmmlu_primary_computer_science": 0,
"arabicmmlu_primary_general_knowledge": 0,
"arabicmmlu_primary_geography": 0,
"arabicmmlu_primary_history": 0,
"arabicmmlu_primary_islamic_studies": 0,
"arabicmmlu_primary_math": 0,
"arabicmmlu_primary_natural_science": 0,
"arabicmmlu_primary_social_science": 0,
"arabicmmlu_prof_law": 0,
"arabicmmlu_univ_accounting": 0,
"arabicmmlu_univ_computer_science": 0,
"arabicmmlu_univ_economics": 0,
"arabicmmlu_univ_management": 0,
"arabicmmlu_univ_political_science": 0
},
"higher_is_better": {
"arabicmmlu": {
"acc": true
},
"arabicmmlu_arabic_language_(general)": {
"acc": true
},
"arabicmmlu_arabic_language_(grammar)": {
"acc": true
},
"arabicmmlu_driving_test": {
"acc": true
},
"arabicmmlu_general_knowledge": {
"acc": true
},
"arabicmmlu_high_arabic_language": {
"acc": true
},
"arabicmmlu_high_biology": {
"acc": true
},
"arabicmmlu_high_civics": {
"acc": true
},
"arabicmmlu_high_computer_science": {
"acc": true
},
"arabicmmlu_high_economics": {
"acc": true
},
"arabicmmlu_high_geography": {
"acc": true
},
"arabicmmlu_high_history": {
"acc": true
},
"arabicmmlu_high_islamic_studies": {
"acc": true
},
"arabicmmlu_high_philosophy": {
"acc": true
},
"arabicmmlu_high_physics": {
"acc": true
},
"arabicmmlu_humanities": {
"acc": true
},
"arabicmmlu_islamic_studies": {
"acc": true
},
"arabicmmlu_language": {
"acc": true
},
"arabicmmlu_middle_arabic_language": {
"acc": true
},
"arabicmmlu_middle_civics": {
"acc": true
},
"arabicmmlu_middle_computer_science": {
"acc": true
},
"arabicmmlu_middle_economics": {
"acc": true
},
"arabicmmlu_middle_general_knowledge": {
"acc": true
},
"arabicmmlu_middle_geography": {
"acc": true
},
"arabicmmlu_middle_history": {
"acc": true
},
"arabicmmlu_middle_islamic_studies": {
"acc": true
},
"arabicmmlu_middle_natural_science": {
"acc": true
},
"arabicmmlu_middle_social_science": {
"acc": true
},
"arabicmmlu_other": {
"acc": true
},
"arabicmmlu_primary_arabic_language": {
"acc": true
},
"arabicmmlu_primary_computer_science": {
"acc": true
},
"arabicmmlu_primary_general_knowledge": {
"acc": true
},
"arabicmmlu_primary_geography": {
"acc": true
},
"arabicmmlu_primary_history": {
"acc": true
},
"arabicmmlu_primary_islamic_studies": {
"acc": true
},
"arabicmmlu_primary_math": {
"acc": true
},
"arabicmmlu_primary_natural_science": {
"acc": true
},
"arabicmmlu_primary_social_science": {
"acc": true
},
"arabicmmlu_prof_law": {
"acc": true
},
"arabicmmlu_social_science": {
"acc": true
},
"arabicmmlu_stem": {
"acc": true
},
"arabicmmlu_univ_accounting": {
"acc": true
},
"arabicmmlu_univ_computer_science": {
"acc": true
},
"arabicmmlu_univ_economics": {
"acc": true
},
"arabicmmlu_univ_management": {
"acc": true
},
"arabicmmlu_univ_political_science": {
"acc": true
}
},
"n-samples": {
"arabicmmlu_univ_management": {
"original": 75,
"effective": 75
},
"arabicmmlu_primary_general_knowledge": {
"original": 162,
"effective": 162
},
"arabicmmlu_middle_general_knowledge": {
"original": 172,
"effective": 172
},
"arabicmmlu_general_knowledge": {
"original": 864,
"effective": 864
},
"arabicmmlu_driving_test": {
"original": 1211,
"effective": 1211
},
"arabicmmlu_primary_geography": {
"original": 57,
"effective": 57
},
"arabicmmlu_high_economics": {
"original": 360,
"effective": 360
},
"arabicmmlu_middle_social_science": {
"original": 241,
"effective": 241
},
"arabicmmlu_middle_economics": {
"original": 87,
"effective": 87
},
"arabicmmlu_high_geography": {
"original": 1038,
"effective": 1038
},
"arabicmmlu_primary_social_science": {
"original": 705,
"effective": 705
},
"arabicmmlu_high_civics": {
"original": 87,
"effective": 87
},
"arabicmmlu_univ_political_science": {
"original": 210,
"effective": 210
},
"arabicmmlu_middle_geography": {
"original": 272,
"effective": 272
},
"arabicmmlu_middle_civics": {
"original": 236,
"effective": 236
},
"arabicmmlu_univ_economics": {
"original": 137,
"effective": 137
},
"arabicmmlu_univ_accounting": {
"original": 74,
"effective": 74
},
"arabicmmlu_middle_islamic_studies": {
"original": 238,
"effective": 238
},
"arabicmmlu_islamic_studies": {
"original": 639,
"effective": 639
},
"arabicmmlu_prof_law": {
"original": 314,
"effective": 314
},
"arabicmmlu_high_history": {
"original": 760,
"effective": 760
},
"arabicmmlu_primary_history": {
"original": 102,
"effective": 102
},
"arabicmmlu_high_philosophy": {
"original": 39,
"effective": 39
},
"arabicmmlu_primary_islamic_studies": {
"original": 999,
"effective": 999
},
"arabicmmlu_middle_history": {
"original": 203,
"effective": 203
},
"arabicmmlu_high_islamic_studies": {
"original": 334,
"effective": 334
},
"arabicmmlu_high_biology": {
"original": 1409,
"effective": 1409
},
"arabicmmlu_primary_computer_science": {
"original": 190,
"effective": 190
},
"arabicmmlu_primary_math": {
"original": 409,
"effective": 409
},
"arabicmmlu_high_physics": {
"original": 255,
"effective": 255
},
"arabicmmlu_middle_computer_science": {
"original": 27,
"effective": 27
},
"arabicmmlu_high_computer_science": {
"original": 261,
"effective": 261
},
"arabicmmlu_univ_computer_science": {
"original": 64,
"effective": 64
},
"arabicmmlu_primary_natural_science": {
"original": 336,
"effective": 336
},
"arabicmmlu_middle_natural_science": {
"original": 242,
"effective": 242
},
"arabicmmlu_arabic_language_(general)": {
"original": 612,
"effective": 612
},
"arabicmmlu_high_arabic_language": {
"original": 390,
"effective": 390
},
"arabicmmlu_arabic_language_(grammar)": {
"original": 365,
"effective": 365
},
"arabicmmlu_primary_arabic_language": {
"original": 252,
"effective": 252
},
"arabicmmlu_middle_arabic_language": {
"original": 27,
"effective": 27
}
},
"config": {
"model": "vllm",
"model_args": "pretrained=inceptionai/jais-family-13b-chat,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.4,download_dir=/tmp",
"batch_size": 1,
"batch_sizes": [],
"device": null,
"use_cache": null,
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null,
"random_seed": 0,
"numpy_seed": 1234,
"torch_seed": 1234,
"fewshot_seed": 1234
},
"git_hash": "8e1bd48d",
"date": 1735755943.4155445,
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
"transformers_version": "4.47.1",
"upper_git_hash": "f64fe2f2a86055aaecced603b56097fd79201711",
"tokenizer_pad_token": [
"<|endoftext|>",
"0"
],
"tokenizer_eos_token": [
"<|endoftext|>",
"0"
],
"tokenizer_bos_token": [
"<|endoftext|>",
"0"
],
"eot_token_id": 0,
"max_length": 2048,
"task_hashes": {},
"model_source": "vllm",
"model_name": "inceptionai/jais-family-13b-chat",
"model_name_sanitized": "inceptionai__jais-family-13b-chat",
"system_instruction": null,
"system_instruction_sha": null,
"fewshot_as_multiturn": false,
"chat_template": null,
"chat_template_sha": null,
"start_time": 9749.039771719,
"end_time": 10388.251187622,
"total_evaluation_time_seconds": "639.2114159029989"
}