naazahrani's picture
Adding evaluation results
661e616 verified
{
"results": {
"gat": {
"acc,none": 0.31719553493039004,
"acc_stderr,none": 0.0036673800264634595,
"alias": "gat"
},
"gat_algebra": {
"alias": " - gat_algebra",
"acc,none": 0.3484230055658627,
"acc_stderr,none": 0.009179890200725068
},
"gat_analogy": {
"alias": " - gat_analogy",
"acc,none": 0.2837887067395264,
"acc_stderr,none": 0.008606490293380746
},
"gat_arithmetic": {
"alias": " - gat_arithmetic",
"acc,none": 0.25653294074346705,
"acc_stderr,none": 0.008379875233626235
},
"gat_association": {
"alias": " - gat_association",
"acc,none": 0.39617224880382773,
"acc_stderr,none": 0.015137296245565172
},
"gat_comparisons": {
"alias": " - gat_comparisons",
"acc,none": 0.28770491803278686,
"acc_stderr,none": 0.012965872987333184
},
"gat_completion": {
"alias": " - gat_completion",
"acc,none": 0.3371900826446281,
"acc_stderr,none": 0.013596237583820002
},
"gat_contextual": {
"alias": " - gat_contextual",
"acc,none": 0.27223926380368096,
"acc_stderr,none": 0.012330976880474218
},
"gat_geometry": {
"alias": " - gat_geometry",
"acc,none": 0.3287671232876712,
"acc_stderr,none": 0.02462238450062787
},
"gat_reading": {
"alias": " - gat_reading",
"acc,none": 0.3761814744801512,
"acc_stderr,none": 0.009421002319111672
}
},
"groups": {
"gat": {
"acc,none": 0.31719553493039004,
"acc_stderr,none": 0.0036673800264634595,
"alias": "gat"
}
},
"group_subtasks": {
"gat": [
"gat_analogy",
"gat_association",
"gat_completion",
"gat_reading",
"gat_algebra",
"gat_arithmetic",
"gat_comparisons",
"gat_contextual",
"gat_geometry"
]
},
"configs": {
"gat_algebra": {
"task": "gat_algebra",
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
"dataset_name": "algebra",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
"doc_to_target": "{{label}}",
"doc_to_choice": [
"\u0623",
"\u0628",
"\u062c",
"\u062f"
],
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"gat_analogy": {
"task": "gat_analogy",
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
"dataset_name": "analogy",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
"doc_to_target": "{{label}}",
"doc_to_choice": [
"\u0623",
"\u0628",
"\u062c",
"\u062f"
],
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"gat_arithmetic": {
"task": "gat_arithmetic",
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
"dataset_name": "arithmetic",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
"doc_to_target": "{{label}}",
"doc_to_choice": [
"\u0623",
"\u0628",
"\u062c",
"\u062f"
],
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"gat_association": {
"task": "gat_association",
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
"dataset_name": "association",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
"doc_to_target": "{{label}}",
"doc_to_choice": [
"\u0623",
"\u0628",
"\u062c",
"\u062f"
],
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"gat_comparisons": {
"task": "gat_comparisons",
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
"dataset_name": "comparisons",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
"doc_to_target": "{{label}}",
"doc_to_choice": [
"\u0623",
"\u0628",
"\u062c",
"\u062f"
],
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"gat_completion": {
"task": "gat_completion",
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
"dataset_name": "completion",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
"doc_to_target": "{{label}}",
"doc_to_choice": [
"\u0623",
"\u0628",
"\u062c",
"\u062f"
],
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"gat_contextual": {
"task": "gat_contextual",
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
"dataset_name": "contextual",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
"doc_to_target": "{{label}}",
"doc_to_choice": [
"\u0623",
"\u0628",
"\u062c",
"\u062f"
],
"description": "\u0627\u0648\u062c\u062f \u0627\u0644\u062e\u0637\u0623 \u0627\u0644\u0633\u064a\u0627\u0642\u064a \u0641\u064a \u0627\u0644\u0639\u0628\u0627\u0631\u0629 \u0627\u0644\u062a\u0627\u0644\u064a\u0629 \u0645\u0646 \u0628\u064a\u0646 \u0627\u0644\u062e\u064a\u0627\u0631\u0627\u062a:",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"gat_geometry": {
"task": "gat_geometry",
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
"dataset_name": "geometry",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
"doc_to_target": "{{label}}",
"doc_to_choice": [
"\u0623",
"\u0628",
"\u062c",
"\u062f"
],
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"gat_reading": {
"task": "gat_reading",
"dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
"dataset_name": "reading",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n # def _process_doc(doc):\n \n # subject = doc['id'].split(\"-\")[0]\n # subject_ar = subtasks_ar[subtasks.index(subject)]\n # out_doc = {**doc, 'subject_ar': subject_ar}\n # print(subject_ar)\n # print(out_doc)\n # return out_doc\n\n return dataset\n",
"doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
"doc_to_target": "{{label}}",
"doc_to_choice": [
"\u0623",
"\u0628",
"\u062c",
"\u062f"
],
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
}
},
"versions": {
"gat": 0,
"gat_algebra": 0.0,
"gat_analogy": 0.0,
"gat_arithmetic": 0.0,
"gat_association": 0.0,
"gat_comparisons": 0.0,
"gat_completion": 0.0,
"gat_contextual": 0.0,
"gat_geometry": 0.0,
"gat_reading": 0.0
},
"n-shot": {
"gat_algebra": 0,
"gat_analogy": 0,
"gat_arithmetic": 0,
"gat_association": 0,
"gat_comparisons": 0,
"gat_completion": 0,
"gat_contextual": 0,
"gat_geometry": 0,
"gat_reading": 0
},
"higher_is_better": {
"gat": {
"acc": true
},
"gat_algebra": {
"acc": true
},
"gat_analogy": {
"acc": true
},
"gat_arithmetic": {
"acc": true
},
"gat_association": {
"acc": true
},
"gat_comparisons": {
"acc": true
},
"gat_completion": {
"acc": true
},
"gat_contextual": {
"acc": true
},
"gat_geometry": {
"acc": true
},
"gat_reading": {
"acc": true
}
},
"n-samples": {
"gat_analogy": {
"original": 2745,
"effective": 2745
},
"gat_association": {
"original": 1045,
"effective": 1045
},
"gat_completion": {
"original": 1210,
"effective": 1210
},
"gat_reading": {
"original": 2645,
"effective": 2645
},
"gat_algebra": {
"original": 2695,
"effective": 2695
},
"gat_arithmetic": {
"original": 2717,
"effective": 2717
},
"gat_comparisons": {
"original": 1220,
"effective": 1220
},
"gat_contextual": {
"original": 1304,
"effective": 1304
},
"gat_geometry": {
"original": 365,
"effective": 365
}
},
"config": {
"model": "vllm",
"model_args": "pretrained=inceptionai/jais-family-13b-chat,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.4,download_dir=/tmp",
"batch_size": 1,
"batch_sizes": [],
"device": null,
"use_cache": null,
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null,
"random_seed": 0,
"numpy_seed": 1234,
"torch_seed": 1234,
"fewshot_seed": 1234
},
"git_hash": "8e1bd48d",
"date": 1735755270.1942198,
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
"transformers_version": "4.47.1",
"upper_git_hash": "f64fe2f2a86055aaecced603b56097fd79201711",
"tokenizer_pad_token": [
"<|endoftext|>",
"0"
],
"tokenizer_eos_token": [
"<|endoftext|>",
"0"
],
"tokenizer_bos_token": [
"<|endoftext|>",
"0"
],
"eot_token_id": 0,
"max_length": 2048,
"task_hashes": {},
"model_source": "vllm",
"model_name": "inceptionai/jais-family-13b-chat",
"model_name_sanitized": "inceptionai__jais-family-13b-chat",
"system_instruction": null,
"system_instruction_sha": null,
"fewshot_as_multiturn": false,
"chat_template": null,
"chat_template_sha": null,
"start_time": 9075.762825732,
"end_time": 9718.924999701,
"total_evaluation_time_seconds": "643.1621739689999"
}