naazahrani's picture
Adding evaluation results
661e616 verified
{
"results": {
"mmlu_pro": {
"exact_match,custom-extract": 0.331781914893617,
"exact_match_stderr,custom-extract": 0.004148145764333384,
"alias": "mmlu_pro"
},
"mmlu_pro_biology": {
"alias": " - biology",
"exact_match,custom-extract": 0.596931659693166,
"exact_match_stderr,custom-extract": 0.01833137910755257
},
"mmlu_pro_business": {
"alias": " - business",
"exact_match,custom-extract": 0.302915082382763,
"exact_match_stderr,custom-extract": 0.016369679755239445
},
"mmlu_pro_chemistry": {
"alias": " - chemistry",
"exact_match,custom-extract": 0.1784452296819788,
"exact_match_stderr,custom-extract": 0.011385167638750223
},
"mmlu_pro_computer_science": {
"alias": " - computer_science",
"exact_match,custom-extract": 0.348780487804878,
"exact_match_stderr,custom-extract": 0.023565580300378107
},
"mmlu_pro_economics": {
"alias": " - economics",
"exact_match,custom-extract": 0.4561611374407583,
"exact_match_stderr,custom-extract": 0.017154595168203345
},
"mmlu_pro_engineering": {
"alias": " - engineering",
"exact_match,custom-extract": 0.2084623323013416,
"exact_match_stderr,custom-extract": 0.013056053198289154
},
"mmlu_pro_health": {
"alias": " - health",
"exact_match,custom-extract": 0.4193154034229829,
"exact_match_stderr,custom-extract": 0.017263527180628145
},
"mmlu_pro_history": {
"alias": " - history",
"exact_match,custom-extract": 0.3674540682414698,
"exact_match_stderr,custom-extract": 0.024731802239981133
},
"mmlu_pro_law": {
"alias": " - law",
"exact_match,custom-extract": 0.23160762942779292,
"exact_match_stderr,custom-extract": 0.012719545997423476
},
"mmlu_pro_math": {
"alias": " - math",
"exact_match,custom-extract": 0.23316062176165803,
"exact_match_stderr,custom-extract": 0.011508346285981068
},
"mmlu_pro_other": {
"alias": " - other",
"exact_match,custom-extract": 0.4090909090909091,
"exact_match_stderr,custom-extract": 0.016183386248098043
},
"mmlu_pro_philosophy": {
"alias": " - philosophy",
"exact_match,custom-extract": 0.37675350701402804,
"exact_match_stderr,custom-extract": 0.02171420342667759
},
"mmlu_pro_physics": {
"alias": " - physics",
"exact_match,custom-extract": 0.2702078521939954,
"exact_match_stderr,custom-extract": 0.012325689684529193
},
"mmlu_pro_psychology": {
"alias": " - psychology",
"exact_match,custom-extract": 0.5300751879699248,
"exact_match_stderr,custom-extract": 0.017678840007925144
}
},
"groups": {
"mmlu_pro": {
"exact_match,custom-extract": 0.331781914893617,
"exact_match_stderr,custom-extract": 0.004148145764333384,
"alias": "mmlu_pro"
}
},
"group_subtasks": {
"mmlu_pro": [
"mmlu_pro_biology",
"mmlu_pro_business",
"mmlu_pro_chemistry",
"mmlu_pro_computer_science",
"mmlu_pro_economics",
"mmlu_pro_engineering",
"mmlu_pro_health",
"mmlu_pro_history",
"mmlu_pro_law",
"mmlu_pro_math",
"mmlu_pro_other",
"mmlu_pro_philosophy",
"mmlu_pro_physics",
"mmlu_pro_psychology"
]
},
"configs": {
"mmlu_pro_biology": {
"task": "mmlu_pro_biology",
"task_alias": "biology",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x1524595d0af0>, subject='biology')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x1524595d3880>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about biology. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x1524595d3760>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_business": {
"task": "mmlu_pro_business",
"task_alias": "business",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x1524595d0160>, subject='business')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x1524595d3490>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about business. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x1524595d3370>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_chemistry": {
"task": "mmlu_pro_chemistry",
"task_alias": "chemistry",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x1524595d0670>, subject='chemistry')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x1524595d30a0>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about chemistry. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x1524595d2f80>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_computer_science": {
"task": "mmlu_pro_computer_science",
"task_alias": "computer_science",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x1524595d0430>, subject='computer science')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x1524595d2cb0>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about computer science. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x1524595d2b90>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_economics": {
"task": "mmlu_pro_economics",
"task_alias": "economics",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x1524595d0b80>, subject='economics')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x1524595d28c0>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about economics. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x1524595d27a0>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_engineering": {
"task": "mmlu_pro_engineering",
"task_alias": "engineering",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x1524595d01f0>, subject='engineering')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x1524595d2440>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about engineering. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x1524595d2320>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_health": {
"task": "mmlu_pro_health",
"task_alias": "health",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x1524595d1cf0>, subject='health')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x1524595d2050>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about health. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x1524595d1f30>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_history": {
"task": "mmlu_pro_history",
"task_alias": "history",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x1524595d15a0>, subject='history')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x1524595d1a20>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about history. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x1524595d1900>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_law": {
"task": "mmlu_pro_law",
"task_alias": "law",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x152459377130>, subject='law')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x152459376c20>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about law. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x152459377010>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_math": {
"task": "mmlu_pro_math",
"task_alias": "math",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x1524595d0700>, subject='math')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x152459377b50>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about math. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x152459376f80>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_other": {
"task": "mmlu_pro_other",
"task_alias": "other",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x152459377370>, subject='other')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x152459377d90>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about other. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x152459376e60>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_philosophy": {
"task": "mmlu_pro_philosophy",
"task_alias": "philosophy",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x1524593775b0>, subject='philosophy')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x15245acd2c20>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about philosophy. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x152459377f40>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_physics": {
"task": "mmlu_pro_physics",
"task_alias": "physics",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x152459377520>, subject='physics')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x15245acd2d40>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about physics. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x1524593777f0>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_psychology": {
"task": "mmlu_pro_psychology",
"task_alias": "psychology",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x15245acd3010>, subject='psychology')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x15245acd3520>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about psychology. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x15245acd2950>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
}
},
"versions": {
"mmlu_pro": 2.0,
"mmlu_pro_biology": 1.0,
"mmlu_pro_business": 1.0,
"mmlu_pro_chemistry": 1.0,
"mmlu_pro_computer_science": 1.0,
"mmlu_pro_economics": 1.0,
"mmlu_pro_engineering": 1.0,
"mmlu_pro_health": 1.0,
"mmlu_pro_history": 1.0,
"mmlu_pro_law": 1.0,
"mmlu_pro_math": 1.0,
"mmlu_pro_other": 1.0,
"mmlu_pro_philosophy": 1.0,
"mmlu_pro_physics": 1.0,
"mmlu_pro_psychology": 1.0
},
"n-shot": {
"mmlu_pro_biology": 5,
"mmlu_pro_business": 5,
"mmlu_pro_chemistry": 5,
"mmlu_pro_computer_science": 5,
"mmlu_pro_economics": 5,
"mmlu_pro_engineering": 5,
"mmlu_pro_health": 5,
"mmlu_pro_history": 5,
"mmlu_pro_law": 5,
"mmlu_pro_math": 5,
"mmlu_pro_other": 5,
"mmlu_pro_philosophy": 5,
"mmlu_pro_physics": 5,
"mmlu_pro_psychology": 5
},
"higher_is_better": {
"mmlu_pro": {
"exact_match": true
},
"mmlu_pro_biology": {
"exact_match": true
},
"mmlu_pro_business": {
"exact_match": true
},
"mmlu_pro_chemistry": {
"exact_match": true
},
"mmlu_pro_computer_science": {
"exact_match": true
},
"mmlu_pro_economics": {
"exact_match": true
},
"mmlu_pro_engineering": {
"exact_match": true
},
"mmlu_pro_health": {
"exact_match": true
},
"mmlu_pro_history": {
"exact_match": true
},
"mmlu_pro_law": {
"exact_match": true
},
"mmlu_pro_math": {
"exact_match": true
},
"mmlu_pro_other": {
"exact_match": true
},
"mmlu_pro_philosophy": {
"exact_match": true
},
"mmlu_pro_physics": {
"exact_match": true
},
"mmlu_pro_psychology": {
"exact_match": true
}
},
"n-samples": {
"mmlu_pro_biology": {
"original": 717,
"effective": 717
},
"mmlu_pro_business": {
"original": 789,
"effective": 789
},
"mmlu_pro_chemistry": {
"original": 1132,
"effective": 1132
},
"mmlu_pro_computer_science": {
"original": 410,
"effective": 410
},
"mmlu_pro_economics": {
"original": 844,
"effective": 844
},
"mmlu_pro_engineering": {
"original": 969,
"effective": 969
},
"mmlu_pro_health": {
"original": 818,
"effective": 818
},
"mmlu_pro_history": {
"original": 381,
"effective": 381
},
"mmlu_pro_law": {
"original": 1101,
"effective": 1101
},
"mmlu_pro_math": {
"original": 1351,
"effective": 1351
},
"mmlu_pro_other": {
"original": 924,
"effective": 924
},
"mmlu_pro_philosophy": {
"original": 499,
"effective": 499
},
"mmlu_pro_physics": {
"original": 1299,
"effective": 1299
},
"mmlu_pro_psychology": {
"original": 798,
"effective": 798
}
},
"config": {
"model": "hf",
"model_args": "pretrained=mistralai/Mistral-7B-Instruct-v0.3,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
"model_num_parameters": 7248023552,
"model_dtype": "torch.bfloat16",
"model_revision": "main",
"model_sha": "e0bc86c23ce5aae1db576c8cca6f06f1f73af2db",
"batch_size": 1,
"batch_sizes": [],
"device": null,
"use_cache": null,
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null,
"random_seed": 0,
"numpy_seed": 1234,
"torch_seed": 1234,
"fewshot_seed": 1234
},
"git_hash": "112b79143",
"date": 1739601765.3763208,
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
"transformers_version": "4.48.3",
"upper_git_hash": null,
"tokenizer_pad_token": [
"<unk>",
"0"
],
"tokenizer_eos_token": [
"</s>",
"2"
],
"tokenizer_bos_token": [
"<s>",
"1"
],
"eot_token_id": 2,
"max_length": 32768,
"task_hashes": {},
"model_source": "hf",
"model_name": "mistralai/Mistral-7B-Instruct-v0.3",
"model_name_sanitized": "mistralai__Mistral-7B-Instruct-v0.3",
"system_instruction": null,
"system_instruction_sha": null,
"fewshot_as_multiturn": false,
"chat_template": null,
"chat_template_sha": null,
"start_time": 1712199.299923685,
"end_time": 1800173.808858755,
"total_evaluation_time_seconds": "87974.50893507013"
}