|
{ |
|
"results": { |
|
"mmlu": { |
|
"acc,none": 0.6556046147272468, |
|
"acc_stderr,none": 0.003740646960579693, |
|
"alias": "mmlu" |
|
}, |
|
"mmlu_humanities": { |
|
"acc,none": 0.594048884165781, |
|
"acc_stderr,none": 0.006625754537215324, |
|
"alias": " - humanities" |
|
}, |
|
"mmlu_formal_logic": { |
|
"alias": " - formal_logic", |
|
"acc,none": 0.48412698412698413, |
|
"acc_stderr,none": 0.04469881854072606 |
|
}, |
|
"mmlu_high_school_european_history": { |
|
"alias": " - high_school_european_history", |
|
"acc,none": 0.7454545454545455, |
|
"acc_stderr,none": 0.03401506715249039 |
|
}, |
|
"mmlu_high_school_us_history": { |
|
"alias": " - high_school_us_history", |
|
"acc,none": 0.8284313725490197, |
|
"acc_stderr,none": 0.026460569561240658 |
|
}, |
|
"mmlu_high_school_world_history": { |
|
"alias": " - high_school_world_history", |
|
"acc,none": 0.8481012658227848, |
|
"acc_stderr,none": 0.023363878096632446 |
|
}, |
|
"mmlu_international_law": { |
|
"alias": " - international_law", |
|
"acc,none": 0.7851239669421488, |
|
"acc_stderr,none": 0.037494924487096966 |
|
}, |
|
"mmlu_jurisprudence": { |
|
"alias": " - jurisprudence", |
|
"acc,none": 0.7962962962962963, |
|
"acc_stderr,none": 0.03893542518824847 |
|
}, |
|
"mmlu_logical_fallacies": { |
|
"alias": " - logical_fallacies", |
|
"acc,none": 0.7607361963190185, |
|
"acc_stderr,none": 0.0335195387952127 |
|
}, |
|
"mmlu_moral_disputes": { |
|
"alias": " - moral_disputes", |
|
"acc,none": 0.7254335260115607, |
|
"acc_stderr,none": 0.02402774515526501 |
|
}, |
|
"mmlu_moral_scenarios": { |
|
"alias": " - moral_scenarios", |
|
"acc,none": 0.30837988826815643, |
|
"acc_stderr,none": 0.01544571691099888 |
|
}, |
|
"mmlu_philosophy": { |
|
"alias": " - philosophy", |
|
"acc,none": 0.7363344051446945, |
|
"acc_stderr,none": 0.02502553850053234 |
|
}, |
|
"mmlu_prehistory": { |
|
"alias": " - prehistory", |
|
"acc,none": 0.7870370370370371, |
|
"acc_stderr,none": 0.022779719088733393 |
|
}, |
|
"mmlu_professional_law": { |
|
"alias": " - professional_law", |
|
"acc,none": 0.5078226857887875, |
|
"acc_stderr,none": 0.012768673076111898 |
|
}, |
|
"mmlu_world_religions": { |
|
"alias": " - world_religions", |
|
"acc,none": 0.8538011695906432, |
|
"acc_stderr,none": 0.027097290118070796 |
|
}, |
|
"mmlu_other": { |
|
"acc,none": 0.7364016736401674, |
|
"acc_stderr,none": 0.0075988038310377095, |
|
"alias": " - other" |
|
}, |
|
"mmlu_business_ethics": { |
|
"alias": " - business_ethics", |
|
"acc,none": 0.69, |
|
"acc_stderr,none": 0.04648231987117316 |
|
}, |
|
"mmlu_clinical_knowledge": { |
|
"alias": " - clinical_knowledge", |
|
"acc,none": 0.7622641509433963, |
|
"acc_stderr,none": 0.02619980880756192 |
|
}, |
|
"mmlu_college_medicine": { |
|
"alias": " - college_medicine", |
|
"acc,none": 0.6589595375722543, |
|
"acc_stderr,none": 0.03614665424180826 |
|
}, |
|
"mmlu_global_facts": { |
|
"alias": " - global_facts", |
|
"acc,none": 0.4, |
|
"acc_stderr,none": 0.04923659639173309 |
|
}, |
|
"mmlu_human_aging": { |
|
"alias": " - human_aging", |
|
"acc,none": 0.7309417040358744, |
|
"acc_stderr,none": 0.029763779406874972 |
|
}, |
|
"mmlu_management": { |
|
"alias": " - management", |
|
"acc,none": 0.7961165048543689, |
|
"acc_stderr,none": 0.039891398595317706 |
|
}, |
|
"mmlu_marketing": { |
|
"alias": " - marketing", |
|
"acc,none": 0.8931623931623932, |
|
"acc_stderr,none": 0.020237149008990922 |
|
}, |
|
"mmlu_medical_genetics": { |
|
"alias": " - medical_genetics", |
|
"acc,none": 0.75, |
|
"acc_stderr,none": 0.04351941398892446 |
|
}, |
|
"mmlu_miscellaneous": { |
|
"alias": " - miscellaneous", |
|
"acc,none": 0.8454661558109834, |
|
"acc_stderr,none": 0.012925773495095985 |
|
}, |
|
"mmlu_nutrition": { |
|
"alias": " - nutrition", |
|
"acc,none": 0.7287581699346405, |
|
"acc_stderr,none": 0.025457756696667878 |
|
}, |
|
"mmlu_professional_accounting": { |
|
"alias": " - professional_accounting", |
|
"acc,none": 0.5212765957446809, |
|
"acc_stderr,none": 0.029800481645628693 |
|
}, |
|
"mmlu_professional_medicine": { |
|
"alias": " - professional_medicine", |
|
"acc,none": 0.7794117647058824, |
|
"acc_stderr,none": 0.02518778666022727 |
|
}, |
|
"mmlu_virology": { |
|
"alias": " - virology", |
|
"acc,none": 0.5421686746987951, |
|
"acc_stderr,none": 0.038786267710023595 |
|
}, |
|
"mmlu_social_sciences": { |
|
"acc,none": 0.7676308092297692, |
|
"acc_stderr,none": 0.0074761436534006055, |
|
"alias": " - social sciences" |
|
}, |
|
"mmlu_econometrics": { |
|
"alias": " - econometrics", |
|
"acc,none": 0.5350877192982456, |
|
"acc_stderr,none": 0.046920083813689104 |
|
}, |
|
"mmlu_high_school_geography": { |
|
"alias": " - high_school_geography", |
|
"acc,none": 0.8181818181818182, |
|
"acc_stderr,none": 0.027479603010538787 |
|
}, |
|
"mmlu_high_school_government_and_politics": { |
|
"alias": " - high_school_government_and_politics", |
|
"acc,none": 0.8756476683937824, |
|
"acc_stderr,none": 0.023814477086593535 |
|
}, |
|
"mmlu_high_school_macroeconomics": { |
|
"alias": " - high_school_macroeconomics", |
|
"acc,none": 0.6692307692307692, |
|
"acc_stderr,none": 0.023854795680971114 |
|
}, |
|
"mmlu_high_school_microeconomics": { |
|
"alias": " - high_school_microeconomics", |
|
"acc,none": 0.726890756302521, |
|
"acc_stderr,none": 0.028942004040998167 |
|
}, |
|
"mmlu_high_school_psychology": { |
|
"alias": " - high_school_psychology", |
|
"acc,none": 0.8623853211009175, |
|
"acc_stderr,none": 0.01477010587864942 |
|
}, |
|
"mmlu_human_sexuality": { |
|
"alias": " - human_sexuality", |
|
"acc,none": 0.7862595419847328, |
|
"acc_stderr,none": 0.0359546161177469 |
|
}, |
|
"mmlu_professional_psychology": { |
|
"alias": " - professional_psychology", |
|
"acc,none": 0.7189542483660131, |
|
"acc_stderr,none": 0.018185218954318082 |
|
}, |
|
"mmlu_public_relations": { |
|
"alias": " - public_relations", |
|
"acc,none": 0.7363636363636363, |
|
"acc_stderr,none": 0.04220224692971987 |
|
}, |
|
"mmlu_security_studies": { |
|
"alias": " - security_studies", |
|
"acc,none": 0.7591836734693878, |
|
"acc_stderr,none": 0.02737294220178816 |
|
}, |
|
"mmlu_sociology": { |
|
"alias": " - sociology", |
|
"acc,none": 0.8407960199004975, |
|
"acc_stderr,none": 0.02587064676616914 |
|
}, |
|
"mmlu_us_foreign_policy": { |
|
"alias": " - us_foreign_policy", |
|
"acc,none": 0.87, |
|
"acc_stderr,none": 0.03379976689896309 |
|
}, |
|
"mmlu_stem": { |
|
"acc,none": 0.5585156993339676, |
|
"acc_stderr,none": 0.00839527418761615, |
|
"alias": " - stem" |
|
}, |
|
"mmlu_abstract_algebra": { |
|
"alias": " - abstract_algebra", |
|
"acc,none": 0.35, |
|
"acc_stderr,none": 0.04793724854411021 |
|
}, |
|
"mmlu_anatomy": { |
|
"alias": " - anatomy", |
|
"acc,none": 0.6444444444444445, |
|
"acc_stderr,none": 0.04135176749720385 |
|
}, |
|
"mmlu_astronomy": { |
|
"alias": " - astronomy", |
|
"acc,none": 0.7368421052631579, |
|
"acc_stderr,none": 0.03583496176361073 |
|
}, |
|
"mmlu_college_biology": { |
|
"alias": " - college_biology", |
|
"acc,none": 0.7916666666666666, |
|
"acc_stderr,none": 0.033961162058453336 |
|
}, |
|
"mmlu_college_chemistry": { |
|
"alias": " - college_chemistry", |
|
"acc,none": 0.47, |
|
"acc_stderr,none": 0.050161355804659205 |
|
}, |
|
"mmlu_college_computer_science": { |
|
"alias": " - college_computer_science", |
|
"acc,none": 0.51, |
|
"acc_stderr,none": 0.05024183937956911 |
|
}, |
|
"mmlu_college_mathematics": { |
|
"alias": " - college_mathematics", |
|
"acc,none": 0.38, |
|
"acc_stderr,none": 0.048783173121456316 |
|
}, |
|
"mmlu_college_physics": { |
|
"alias": " - college_physics", |
|
"acc,none": 0.37254901960784315, |
|
"acc_stderr,none": 0.048108401480826346 |
|
}, |
|
"mmlu_computer_security": { |
|
"alias": " - computer_security", |
|
"acc,none": 0.74, |
|
"acc_stderr,none": 0.044084400227680814 |
|
}, |
|
"mmlu_conceptual_physics": { |
|
"alias": " - conceptual_physics", |
|
"acc,none": 0.6170212765957447, |
|
"acc_stderr,none": 0.031778212502369216 |
|
}, |
|
"mmlu_electrical_engineering": { |
|
"alias": " - electrical_engineering", |
|
"acc,none": 0.6206896551724138, |
|
"acc_stderr,none": 0.04043461861916747 |
|
}, |
|
"mmlu_elementary_mathematics": { |
|
"alias": " - elementary_mathematics", |
|
"acc,none": 0.4470899470899471, |
|
"acc_stderr,none": 0.025606723995777025 |
|
}, |
|
"mmlu_high_school_biology": { |
|
"alias": " - high_school_biology", |
|
"acc,none": 0.8354838709677419, |
|
"acc_stderr,none": 0.021090847745939334 |
|
}, |
|
"mmlu_high_school_chemistry": { |
|
"alias": " - high_school_chemistry", |
|
"acc,none": 0.5221674876847291, |
|
"acc_stderr,none": 0.03514528562175007 |
|
}, |
|
"mmlu_high_school_computer_science": { |
|
"alias": " - high_school_computer_science", |
|
"acc,none": 0.75, |
|
"acc_stderr,none": 0.04351941398892446 |
|
}, |
|
"mmlu_high_school_mathematics": { |
|
"alias": " - high_school_mathematics", |
|
"acc,none": 0.337037037037037, |
|
"acc_stderr,none": 0.02882088466625326 |
|
}, |
|
"mmlu_high_school_physics": { |
|
"alias": " - high_school_physics", |
|
"acc,none": 0.3973509933774834, |
|
"acc_stderr,none": 0.039955240076816806 |
|
}, |
|
"mmlu_high_school_statistics": { |
|
"alias": " - high_school_statistics", |
|
"acc,none": 0.5462962962962963, |
|
"acc_stderr,none": 0.033953227263757976 |
|
}, |
|
"mmlu_machine_learning": { |
|
"alias": " - machine_learning", |
|
"acc,none": 0.4642857142857143, |
|
"acc_stderr,none": 0.04733667890053756 |
|
} |
|
}, |
|
"groups": { |
|
"mmlu": { |
|
"acc,none": 0.6556046147272468, |
|
"acc_stderr,none": 0.003740646960579693, |
|
"alias": "mmlu" |
|
}, |
|
"mmlu_humanities": { |
|
"acc,none": 0.594048884165781, |
|
"acc_stderr,none": 0.006625754537215324, |
|
"alias": " - humanities" |
|
}, |
|
"mmlu_other": { |
|
"acc,none": 0.7364016736401674, |
|
"acc_stderr,none": 0.0075988038310377095, |
|
"alias": " - other" |
|
}, |
|
"mmlu_social_sciences": { |
|
"acc,none": 0.7676308092297692, |
|
"acc_stderr,none": 0.0074761436534006055, |
|
"alias": " - social sciences" |
|
}, |
|
"mmlu_stem": { |
|
"acc,none": 0.5585156993339676, |
|
"acc_stderr,none": 0.00839527418761615, |
|
"alias": " - stem" |
|
} |
|
}, |
|
"group_subtasks": { |
|
"mmlu_humanities": [ |
|
"mmlu_high_school_us_history", |
|
"mmlu_philosophy", |
|
"mmlu_moral_disputes", |
|
"mmlu_moral_scenarios", |
|
"mmlu_prehistory", |
|
"mmlu_professional_law", |
|
"mmlu_jurisprudence", |
|
"mmlu_high_school_world_history", |
|
"mmlu_formal_logic", |
|
"mmlu_world_religions", |
|
"mmlu_high_school_european_history", |
|
"mmlu_logical_fallacies", |
|
"mmlu_international_law" |
|
], |
|
"mmlu_social_sciences": [ |
|
"mmlu_security_studies", |
|
"mmlu_high_school_government_and_politics", |
|
"mmlu_public_relations", |
|
"mmlu_econometrics", |
|
"mmlu_high_school_psychology", |
|
"mmlu_professional_psychology", |
|
"mmlu_high_school_geography", |
|
"mmlu_us_foreign_policy", |
|
"mmlu_sociology", |
|
"mmlu_high_school_microeconomics", |
|
"mmlu_human_sexuality", |
|
"mmlu_high_school_macroeconomics" |
|
], |
|
"mmlu_other": [ |
|
"mmlu_nutrition", |
|
"mmlu_professional_accounting", |
|
"mmlu_business_ethics", |
|
"mmlu_miscellaneous", |
|
"mmlu_clinical_knowledge", |
|
"mmlu_medical_genetics", |
|
"mmlu_college_medicine", |
|
"mmlu_virology", |
|
"mmlu_global_facts", |
|
"mmlu_human_aging", |
|
"mmlu_professional_medicine", |
|
"mmlu_marketing", |
|
"mmlu_management" |
|
], |
|
"mmlu_stem": [ |
|
"mmlu_abstract_algebra", |
|
"mmlu_astronomy", |
|
"mmlu_high_school_chemistry", |
|
"mmlu_elementary_mathematics", |
|
"mmlu_college_biology", |
|
"mmlu_machine_learning", |
|
"mmlu_conceptual_physics", |
|
"mmlu_high_school_biology", |
|
"mmlu_high_school_mathematics", |
|
"mmlu_college_mathematics", |
|
"mmlu_college_chemistry", |
|
"mmlu_computer_security", |
|
"mmlu_college_computer_science", |
|
"mmlu_high_school_physics", |
|
"mmlu_college_physics", |
|
"mmlu_electrical_engineering", |
|
"mmlu_anatomy", |
|
"mmlu_high_school_statistics", |
|
"mmlu_high_school_computer_science" |
|
], |
|
"mmlu": [ |
|
"mmlu_stem", |
|
"mmlu_other", |
|
"mmlu_social_sciences", |
|
"mmlu_humanities" |
|
] |
|
}, |
|
"configs": { |
|
"mmlu_abstract_algebra": { |
|
"task": "mmlu_abstract_algebra", |
|
"task_alias": "abstract_algebra", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "abstract_algebra", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_anatomy": { |
|
"task": "mmlu_anatomy", |
|
"task_alias": "anatomy", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "anatomy", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about anatomy.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_astronomy": { |
|
"task": "mmlu_astronomy", |
|
"task_alias": "astronomy", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "astronomy", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about astronomy.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_business_ethics": { |
|
"task": "mmlu_business_ethics", |
|
"task_alias": "business_ethics", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "business_ethics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about business ethics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_clinical_knowledge": { |
|
"task": "mmlu_clinical_knowledge", |
|
"task_alias": "clinical_knowledge", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "clinical_knowledge", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_college_biology": { |
|
"task": "mmlu_college_biology", |
|
"task_alias": "college_biology", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_biology", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college biology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_college_chemistry": { |
|
"task": "mmlu_college_chemistry", |
|
"task_alias": "college_chemistry", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_chemistry", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college chemistry.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_college_computer_science": { |
|
"task": "mmlu_college_computer_science", |
|
"task_alias": "college_computer_science", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_computer_science", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college computer science.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_college_mathematics": { |
|
"task": "mmlu_college_mathematics", |
|
"task_alias": "college_mathematics", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_mathematics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college mathematics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_college_medicine": { |
|
"task": "mmlu_college_medicine", |
|
"task_alias": "college_medicine", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_medicine", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college medicine.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_college_physics": { |
|
"task": "mmlu_college_physics", |
|
"task_alias": "college_physics", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_physics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college physics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_computer_security": { |
|
"task": "mmlu_computer_security", |
|
"task_alias": "computer_security", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "computer_security", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about computer security.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_conceptual_physics": { |
|
"task": "mmlu_conceptual_physics", |
|
"task_alias": "conceptual_physics", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "conceptual_physics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_econometrics": { |
|
"task": "mmlu_econometrics", |
|
"task_alias": "econometrics", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "econometrics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about econometrics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_electrical_engineering": { |
|
"task": "mmlu_electrical_engineering", |
|
"task_alias": "electrical_engineering", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "electrical_engineering", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_elementary_mathematics": { |
|
"task": "mmlu_elementary_mathematics", |
|
"task_alias": "elementary_mathematics", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "elementary_mathematics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_formal_logic": { |
|
"task": "mmlu_formal_logic", |
|
"task_alias": "formal_logic", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "formal_logic", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about formal logic.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_global_facts": { |
|
"task": "mmlu_global_facts", |
|
"task_alias": "global_facts", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "global_facts", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about global facts.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_biology": { |
|
"task": "mmlu_high_school_biology", |
|
"task_alias": "high_school_biology", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_biology", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school biology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_chemistry": { |
|
"task": "mmlu_high_school_chemistry", |
|
"task_alias": "high_school_chemistry", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_chemistry", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_computer_science": { |
|
"task": "mmlu_high_school_computer_science", |
|
"task_alias": "high_school_computer_science", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_computer_science", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school computer science.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_european_history": { |
|
"task": "mmlu_high_school_european_history", |
|
"task_alias": "high_school_european_history", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_european_history", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school european history.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_geography": { |
|
"task": "mmlu_high_school_geography", |
|
"task_alias": "high_school_geography", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_geography", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school geography.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_government_and_politics": { |
|
"task": "mmlu_high_school_government_and_politics", |
|
"task_alias": "high_school_government_and_politics", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_government_and_politics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_macroeconomics": { |
|
"task": "mmlu_high_school_macroeconomics", |
|
"task_alias": "high_school_macroeconomics", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_macroeconomics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_mathematics": { |
|
"task": "mmlu_high_school_mathematics", |
|
"task_alias": "high_school_mathematics", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_mathematics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_microeconomics": { |
|
"task": "mmlu_high_school_microeconomics", |
|
"task_alias": "high_school_microeconomics", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_microeconomics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_physics": { |
|
"task": "mmlu_high_school_physics", |
|
"task_alias": "high_school_physics", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_physics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school physics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_psychology": { |
|
"task": "mmlu_high_school_psychology", |
|
"task_alias": "high_school_psychology", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_psychology", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school psychology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_statistics": { |
|
"task": "mmlu_high_school_statistics", |
|
"task_alias": "high_school_statistics", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_statistics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school statistics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_us_history": { |
|
"task": "mmlu_high_school_us_history", |
|
"task_alias": "high_school_us_history", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_us_history", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school us history.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_world_history": { |
|
"task": "mmlu_high_school_world_history", |
|
"task_alias": "high_school_world_history", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_world_history", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school world history.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_human_aging": { |
|
"task": "mmlu_human_aging", |
|
"task_alias": "human_aging", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "human_aging", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about human aging.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_human_sexuality": { |
|
"task": "mmlu_human_sexuality", |
|
"task_alias": "human_sexuality", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "human_sexuality", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about human sexuality.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_international_law": { |
|
"task": "mmlu_international_law", |
|
"task_alias": "international_law", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "international_law", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about international law.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_jurisprudence": { |
|
"task": "mmlu_jurisprudence", |
|
"task_alias": "jurisprudence", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "jurisprudence", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_logical_fallacies": { |
|
"task": "mmlu_logical_fallacies", |
|
"task_alias": "logical_fallacies", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "logical_fallacies", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_machine_learning": { |
|
"task": "mmlu_machine_learning", |
|
"task_alias": "machine_learning", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "machine_learning", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about machine learning.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_management": { |
|
"task": "mmlu_management", |
|
"task_alias": "management", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "management", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about management.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_marketing": { |
|
"task": "mmlu_marketing", |
|
"task_alias": "marketing", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "marketing", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about marketing.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_medical_genetics": { |
|
"task": "mmlu_medical_genetics", |
|
"task_alias": "medical_genetics", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "medical_genetics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about medical genetics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_miscellaneous": { |
|
"task": "mmlu_miscellaneous", |
|
"task_alias": "miscellaneous", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "miscellaneous", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_moral_disputes": { |
|
"task": "mmlu_moral_disputes", |
|
"task_alias": "moral_disputes", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "moral_disputes", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about moral disputes.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_moral_scenarios": { |
|
"task": "mmlu_moral_scenarios", |
|
"task_alias": "moral_scenarios", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "moral_scenarios", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_nutrition": { |
|
"task": "mmlu_nutrition", |
|
"task_alias": "nutrition", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "nutrition", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about nutrition.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_philosophy": { |
|
"task": "mmlu_philosophy", |
|
"task_alias": "philosophy", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "philosophy", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about philosophy.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_prehistory": { |
|
"task": "mmlu_prehistory", |
|
"task_alias": "prehistory", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "prehistory", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about prehistory.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_professional_accounting": { |
|
"task": "mmlu_professional_accounting", |
|
"task_alias": "professional_accounting", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "professional_accounting", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about professional accounting.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_professional_law": { |
|
"task": "mmlu_professional_law", |
|
"task_alias": "professional_law", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "professional_law", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about professional law.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_professional_medicine": { |
|
"task": "mmlu_professional_medicine", |
|
"task_alias": "professional_medicine", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "professional_medicine", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about professional medicine.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_professional_psychology": { |
|
"task": "mmlu_professional_psychology", |
|
"task_alias": "professional_psychology", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "professional_psychology", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about professional psychology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_public_relations": { |
|
"task": "mmlu_public_relations", |
|
"task_alias": "public_relations", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "public_relations", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about public relations.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_security_studies": { |
|
"task": "mmlu_security_studies", |
|
"task_alias": "security_studies", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "security_studies", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about security studies.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_sociology": { |
|
"task": "mmlu_sociology", |
|
"task_alias": "sociology", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "sociology", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about sociology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_us_foreign_policy": { |
|
"task": "mmlu_us_foreign_policy", |
|
"task_alias": "us_foreign_policy", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "us_foreign_policy", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_virology": { |
|
"task": "mmlu_virology", |
|
"task_alias": "virology", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "virology", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about virology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_world_religions": { |
|
"task": "mmlu_world_religions", |
|
"task_alias": "world_religions", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "world_religions", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about world religions.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
} |
|
}, |
|
"versions": { |
|
"mmlu": 2, |
|
"mmlu_abstract_algebra": 1.0, |
|
"mmlu_anatomy": 1.0, |
|
"mmlu_astronomy": 1.0, |
|
"mmlu_business_ethics": 1.0, |
|
"mmlu_clinical_knowledge": 1.0, |
|
"mmlu_college_biology": 1.0, |
|
"mmlu_college_chemistry": 1.0, |
|
"mmlu_college_computer_science": 1.0, |
|
"mmlu_college_mathematics": 1.0, |
|
"mmlu_college_medicine": 1.0, |
|
"mmlu_college_physics": 1.0, |
|
"mmlu_computer_security": 1.0, |
|
"mmlu_conceptual_physics": 1.0, |
|
"mmlu_econometrics": 1.0, |
|
"mmlu_electrical_engineering": 1.0, |
|
"mmlu_elementary_mathematics": 1.0, |
|
"mmlu_formal_logic": 1.0, |
|
"mmlu_global_facts": 1.0, |
|
"mmlu_high_school_biology": 1.0, |
|
"mmlu_high_school_chemistry": 1.0, |
|
"mmlu_high_school_computer_science": 1.0, |
|
"mmlu_high_school_european_history": 1.0, |
|
"mmlu_high_school_geography": 1.0, |
|
"mmlu_high_school_government_and_politics": 1.0, |
|
"mmlu_high_school_macroeconomics": 1.0, |
|
"mmlu_high_school_mathematics": 1.0, |
|
"mmlu_high_school_microeconomics": 1.0, |
|
"mmlu_high_school_physics": 1.0, |
|
"mmlu_high_school_psychology": 1.0, |
|
"mmlu_high_school_statistics": 1.0, |
|
"mmlu_high_school_us_history": 1.0, |
|
"mmlu_high_school_world_history": 1.0, |
|
"mmlu_human_aging": 1.0, |
|
"mmlu_human_sexuality": 1.0, |
|
"mmlu_humanities": 2, |
|
"mmlu_international_law": 1.0, |
|
"mmlu_jurisprudence": 1.0, |
|
"mmlu_logical_fallacies": 1.0, |
|
"mmlu_machine_learning": 1.0, |
|
"mmlu_management": 1.0, |
|
"mmlu_marketing": 1.0, |
|
"mmlu_medical_genetics": 1.0, |
|
"mmlu_miscellaneous": 1.0, |
|
"mmlu_moral_disputes": 1.0, |
|
"mmlu_moral_scenarios": 1.0, |
|
"mmlu_nutrition": 1.0, |
|
"mmlu_other": 2, |
|
"mmlu_philosophy": 1.0, |
|
"mmlu_prehistory": 1.0, |
|
"mmlu_professional_accounting": 1.0, |
|
"mmlu_professional_law": 1.0, |
|
"mmlu_professional_medicine": 1.0, |
|
"mmlu_professional_psychology": 1.0, |
|
"mmlu_public_relations": 1.0, |
|
"mmlu_security_studies": 1.0, |
|
"mmlu_social_sciences": 2, |
|
"mmlu_sociology": 1.0, |
|
"mmlu_stem": 2, |
|
"mmlu_us_foreign_policy": 1.0, |
|
"mmlu_virology": 1.0, |
|
"mmlu_world_religions": 1.0 |
|
}, |
|
"n-shot": { |
|
"mmlu_abstract_algebra": 0, |
|
"mmlu_anatomy": 0, |
|
"mmlu_astronomy": 0, |
|
"mmlu_business_ethics": 0, |
|
"mmlu_clinical_knowledge": 0, |
|
"mmlu_college_biology": 0, |
|
"mmlu_college_chemistry": 0, |
|
"mmlu_college_computer_science": 0, |
|
"mmlu_college_mathematics": 0, |
|
"mmlu_college_medicine": 0, |
|
"mmlu_college_physics": 0, |
|
"mmlu_computer_security": 0, |
|
"mmlu_conceptual_physics": 0, |
|
"mmlu_econometrics": 0, |
|
"mmlu_electrical_engineering": 0, |
|
"mmlu_elementary_mathematics": 0, |
|
"mmlu_formal_logic": 0, |
|
"mmlu_global_facts": 0, |
|
"mmlu_high_school_biology": 0, |
|
"mmlu_high_school_chemistry": 0, |
|
"mmlu_high_school_computer_science": 0, |
|
"mmlu_high_school_european_history": 0, |
|
"mmlu_high_school_geography": 0, |
|
"mmlu_high_school_government_and_politics": 0, |
|
"mmlu_high_school_macroeconomics": 0, |
|
"mmlu_high_school_mathematics": 0, |
|
"mmlu_high_school_microeconomics": 0, |
|
"mmlu_high_school_physics": 0, |
|
"mmlu_high_school_psychology": 0, |
|
"mmlu_high_school_statistics": 0, |
|
"mmlu_high_school_us_history": 0, |
|
"mmlu_high_school_world_history": 0, |
|
"mmlu_human_aging": 0, |
|
"mmlu_human_sexuality": 0, |
|
"mmlu_international_law": 0, |
|
"mmlu_jurisprudence": 0, |
|
"mmlu_logical_fallacies": 0, |
|
"mmlu_machine_learning": 0, |
|
"mmlu_management": 0, |
|
"mmlu_marketing": 0, |
|
"mmlu_medical_genetics": 0, |
|
"mmlu_miscellaneous": 0, |
|
"mmlu_moral_disputes": 0, |
|
"mmlu_moral_scenarios": 0, |
|
"mmlu_nutrition": 0, |
|
"mmlu_philosophy": 0, |
|
"mmlu_prehistory": 0, |
|
"mmlu_professional_accounting": 0, |
|
"mmlu_professional_law": 0, |
|
"mmlu_professional_medicine": 0, |
|
"mmlu_professional_psychology": 0, |
|
"mmlu_public_relations": 0, |
|
"mmlu_security_studies": 0, |
|
"mmlu_sociology": 0, |
|
"mmlu_us_foreign_policy": 0, |
|
"mmlu_virology": 0, |
|
"mmlu_world_religions": 0 |
|
}, |
|
"higher_is_better": { |
|
"mmlu": { |
|
"acc": true |
|
}, |
|
"mmlu_abstract_algebra": { |
|
"acc": true |
|
}, |
|
"mmlu_anatomy": { |
|
"acc": true |
|
}, |
|
"mmlu_astronomy": { |
|
"acc": true |
|
}, |
|
"mmlu_business_ethics": { |
|
"acc": true |
|
}, |
|
"mmlu_clinical_knowledge": { |
|
"acc": true |
|
}, |
|
"mmlu_college_biology": { |
|
"acc": true |
|
}, |
|
"mmlu_college_chemistry": { |
|
"acc": true |
|
}, |
|
"mmlu_college_computer_science": { |
|
"acc": true |
|
}, |
|
"mmlu_college_mathematics": { |
|
"acc": true |
|
}, |
|
"mmlu_college_medicine": { |
|
"acc": true |
|
}, |
|
"mmlu_college_physics": { |
|
"acc": true |
|
}, |
|
"mmlu_computer_security": { |
|
"acc": true |
|
}, |
|
"mmlu_conceptual_physics": { |
|
"acc": true |
|
}, |
|
"mmlu_econometrics": { |
|
"acc": true |
|
}, |
|
"mmlu_electrical_engineering": { |
|
"acc": true |
|
}, |
|
"mmlu_elementary_mathematics": { |
|
"acc": true |
|
}, |
|
"mmlu_formal_logic": { |
|
"acc": true |
|
}, |
|
"mmlu_global_facts": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_biology": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_chemistry": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_computer_science": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_european_history": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_geography": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_government_and_politics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_macroeconomics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_mathematics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_microeconomics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_physics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_psychology": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_statistics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_us_history": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_world_history": { |
|
"acc": true |
|
}, |
|
"mmlu_human_aging": { |
|
"acc": true |
|
}, |
|
"mmlu_human_sexuality": { |
|
"acc": true |
|
}, |
|
"mmlu_humanities": { |
|
"acc": true |
|
}, |
|
"mmlu_international_law": { |
|
"acc": true |
|
}, |
|
"mmlu_jurisprudence": { |
|
"acc": true |
|
}, |
|
"mmlu_logical_fallacies": { |
|
"acc": true |
|
}, |
|
"mmlu_machine_learning": { |
|
"acc": true |
|
}, |
|
"mmlu_management": { |
|
"acc": true |
|
}, |
|
"mmlu_marketing": { |
|
"acc": true |
|
}, |
|
"mmlu_medical_genetics": { |
|
"acc": true |
|
}, |
|
"mmlu_miscellaneous": { |
|
"acc": true |
|
}, |
|
"mmlu_moral_disputes": { |
|
"acc": true |
|
}, |
|
"mmlu_moral_scenarios": { |
|
"acc": true |
|
}, |
|
"mmlu_nutrition": { |
|
"acc": true |
|
}, |
|
"mmlu_other": { |
|
"acc": true |
|
}, |
|
"mmlu_philosophy": { |
|
"acc": true |
|
}, |
|
"mmlu_prehistory": { |
|
"acc": true |
|
}, |
|
"mmlu_professional_accounting": { |
|
"acc": true |
|
}, |
|
"mmlu_professional_law": { |
|
"acc": true |
|
}, |
|
"mmlu_professional_medicine": { |
|
"acc": true |
|
}, |
|
"mmlu_professional_psychology": { |
|
"acc": true |
|
}, |
|
"mmlu_public_relations": { |
|
"acc": true |
|
}, |
|
"mmlu_security_studies": { |
|
"acc": true |
|
}, |
|
"mmlu_social_sciences": { |
|
"acc": true |
|
}, |
|
"mmlu_sociology": { |
|
"acc": true |
|
}, |
|
"mmlu_stem": { |
|
"acc": true |
|
}, |
|
"mmlu_us_foreign_policy": { |
|
"acc": true |
|
}, |
|
"mmlu_virology": { |
|
"acc": true |
|
}, |
|
"mmlu_world_religions": { |
|
"acc": true |
|
} |
|
}, |
|
"n-samples": { |
|
"mmlu_abstract_algebra": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_astronomy": { |
|
"original": 152, |
|
"effective": 152 |
|
}, |
|
"mmlu_high_school_chemistry": { |
|
"original": 203, |
|
"effective": 203 |
|
}, |
|
"mmlu_elementary_mathematics": { |
|
"original": 378, |
|
"effective": 378 |
|
}, |
|
"mmlu_college_biology": { |
|
"original": 144, |
|
"effective": 144 |
|
}, |
|
"mmlu_machine_learning": { |
|
"original": 112, |
|
"effective": 112 |
|
}, |
|
"mmlu_conceptual_physics": { |
|
"original": 235, |
|
"effective": 235 |
|
}, |
|
"mmlu_high_school_biology": { |
|
"original": 310, |
|
"effective": 310 |
|
}, |
|
"mmlu_high_school_mathematics": { |
|
"original": 270, |
|
"effective": 270 |
|
}, |
|
"mmlu_college_mathematics": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_college_chemistry": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_computer_security": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_college_computer_science": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_high_school_physics": { |
|
"original": 151, |
|
"effective": 151 |
|
}, |
|
"mmlu_college_physics": { |
|
"original": 102, |
|
"effective": 102 |
|
}, |
|
"mmlu_electrical_engineering": { |
|
"original": 145, |
|
"effective": 145 |
|
}, |
|
"mmlu_anatomy": { |
|
"original": 135, |
|
"effective": 135 |
|
}, |
|
"mmlu_high_school_statistics": { |
|
"original": 216, |
|
"effective": 216 |
|
}, |
|
"mmlu_high_school_computer_science": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_nutrition": { |
|
"original": 306, |
|
"effective": 306 |
|
}, |
|
"mmlu_professional_accounting": { |
|
"original": 282, |
|
"effective": 282 |
|
}, |
|
"mmlu_business_ethics": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_miscellaneous": { |
|
"original": 783, |
|
"effective": 783 |
|
}, |
|
"mmlu_clinical_knowledge": { |
|
"original": 265, |
|
"effective": 265 |
|
}, |
|
"mmlu_medical_genetics": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_college_medicine": { |
|
"original": 173, |
|
"effective": 173 |
|
}, |
|
"mmlu_virology": { |
|
"original": 166, |
|
"effective": 166 |
|
}, |
|
"mmlu_global_facts": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_human_aging": { |
|
"original": 223, |
|
"effective": 223 |
|
}, |
|
"mmlu_professional_medicine": { |
|
"original": 272, |
|
"effective": 272 |
|
}, |
|
"mmlu_marketing": { |
|
"original": 234, |
|
"effective": 234 |
|
}, |
|
"mmlu_management": { |
|
"original": 103, |
|
"effective": 103 |
|
}, |
|
"mmlu_security_studies": { |
|
"original": 245, |
|
"effective": 245 |
|
}, |
|
"mmlu_high_school_government_and_politics": { |
|
"original": 193, |
|
"effective": 193 |
|
}, |
|
"mmlu_public_relations": { |
|
"original": 110, |
|
"effective": 110 |
|
}, |
|
"mmlu_econometrics": { |
|
"original": 114, |
|
"effective": 114 |
|
}, |
|
"mmlu_high_school_psychology": { |
|
"original": 545, |
|
"effective": 545 |
|
}, |
|
"mmlu_professional_psychology": { |
|
"original": 612, |
|
"effective": 612 |
|
}, |
|
"mmlu_high_school_geography": { |
|
"original": 198, |
|
"effective": 198 |
|
}, |
|
"mmlu_us_foreign_policy": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_sociology": { |
|
"original": 201, |
|
"effective": 201 |
|
}, |
|
"mmlu_high_school_microeconomics": { |
|
"original": 238, |
|
"effective": 238 |
|
}, |
|
"mmlu_human_sexuality": { |
|
"original": 131, |
|
"effective": 131 |
|
}, |
|
"mmlu_high_school_macroeconomics": { |
|
"original": 390, |
|
"effective": 390 |
|
}, |
|
"mmlu_high_school_us_history": { |
|
"original": 204, |
|
"effective": 204 |
|
}, |
|
"mmlu_philosophy": { |
|
"original": 311, |
|
"effective": 311 |
|
}, |
|
"mmlu_moral_disputes": { |
|
"original": 346, |
|
"effective": 346 |
|
}, |
|
"mmlu_moral_scenarios": { |
|
"original": 895, |
|
"effective": 895 |
|
}, |
|
"mmlu_prehistory": { |
|
"original": 324, |
|
"effective": 324 |
|
}, |
|
"mmlu_professional_law": { |
|
"original": 1534, |
|
"effective": 1534 |
|
}, |
|
"mmlu_jurisprudence": { |
|
"original": 108, |
|
"effective": 108 |
|
}, |
|
"mmlu_high_school_world_history": { |
|
"original": 237, |
|
"effective": 237 |
|
}, |
|
"mmlu_formal_logic": { |
|
"original": 126, |
|
"effective": 126 |
|
}, |
|
"mmlu_world_religions": { |
|
"original": 171, |
|
"effective": 171 |
|
}, |
|
"mmlu_high_school_european_history": { |
|
"original": 165, |
|
"effective": 165 |
|
}, |
|
"mmlu_logical_fallacies": { |
|
"original": 163, |
|
"effective": 163 |
|
}, |
|
"mmlu_international_law": { |
|
"original": 121, |
|
"effective": 121 |
|
} |
|
}, |
|
"config": { |
|
"model": "hf", |
|
"model_args": "pretrained=mistralai/Mistral-Nemo-Instruct-2407,trust_remote_code=True,cache_dir=/tmp,parallelize=True", |
|
"model_num_parameters": 12247782400, |
|
"model_dtype": "torch.bfloat16", |
|
"model_revision": "main", |
|
"model_sha": "8aedd450f2583e9c67fae1929f6936b8fc5aef9c", |
|
"batch_size": "auto", |
|
"batch_sizes": [ |
|
64 |
|
], |
|
"device": null, |
|
"use_cache": null, |
|
"limit": null, |
|
"bootstrap_iters": 100000, |
|
"gen_kwargs": null, |
|
"random_seed": 0, |
|
"numpy_seed": 1234, |
|
"torch_seed": 1234, |
|
"fewshot_seed": 1234 |
|
}, |
|
"git_hash": "788a3672", |
|
"date": 1737955943.2854187, |
|
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.89\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect", |
|
"transformers_version": "4.48.1", |
|
"upper_git_hash": "086919bd66f4e15fdcd4b792a7b27a698c1ba091", |
|
"tokenizer_pad_token": [ |
|
"<unk>", |
|
"0" |
|
], |
|
"tokenizer_eos_token": [ |
|
"</s>", |
|
"2" |
|
], |
|
"tokenizer_bos_token": [ |
|
"<s>", |
|
"1" |
|
], |
|
"eot_token_id": 2, |
|
"max_length": 131072, |
|
"task_hashes": {}, |
|
"model_source": "hf", |
|
"model_name": "mistralai/Mistral-Nemo-Instruct-2407", |
|
"model_name_sanitized": "mistralai__Mistral-Nemo-Instruct-2407", |
|
"system_instruction": null, |
|
"system_instruction_sha": null, |
|
"fewshot_as_multiturn": false, |
|
"chat_template": null, |
|
"chat_template_sha": null, |
|
"start_time": 68319.138627677, |
|
"end_time": 68564.619365345, |
|
"total_evaluation_time_seconds": "245.48073766799644" |
|
} |