naazahrani's picture
Adding evaluation results
661e616 verified
{
"results": {
"mmlu_pro": {
"exact_match,custom-extract": 0.5244348404255319,
"exact_match_stderr,custom-extract": 0.004361486625586025,
"alias": "mmlu_pro"
},
"mmlu_pro_biology": {
"alias": " - biology",
"exact_match,custom-extract": 0.7670850767085077,
"exact_match_stderr,custom-extract": 0.015796610634606297
},
"mmlu_pro_business": {
"alias": " - business",
"exact_match,custom-extract": 0.5690747782002535,
"exact_match_stderr,custom-extract": 0.017640972260771548
},
"mmlu_pro_chemistry": {
"alias": " - chemistry",
"exact_match,custom-extract": 0.27385159010600707,
"exact_match_stderr,custom-extract": 0.013259862675787527
},
"mmlu_pro_computer_science": {
"alias": " - computer_science",
"exact_match,custom-extract": 0.5487804878048781,
"exact_match_stderr,custom-extract": 0.024605467021746173
},
"mmlu_pro_economics": {
"alias": " - economics",
"exact_match,custom-extract": 0.6848341232227488,
"exact_match_stderr,custom-extract": 0.01600105078446331
},
"mmlu_pro_engineering": {
"alias": " - engineering",
"exact_match,custom-extract": 0.32507739938080493,
"exact_match_stderr,custom-extract": 0.01505506709517795
},
"mmlu_pro_health": {
"alias": " - health",
"exact_match,custom-extract": 0.6075794621026895,
"exact_match_stderr,custom-extract": 0.017083088022054806
},
"mmlu_pro_history": {
"alias": " - history",
"exact_match,custom-extract": 0.5800524934383202,
"exact_match_stderr,custom-extract": 0.02531858056501443
},
"mmlu_pro_law": {
"alias": " - law",
"exact_match,custom-extract": 0.38419618528610355,
"exact_match_stderr,custom-extract": 0.014665651784719584
},
"mmlu_pro_math": {
"alias": " - math",
"exact_match,custom-extract": 0.53960029607698,
"exact_match_stderr,custom-extract": 0.01356552865963102
},
"mmlu_pro_other": {
"alias": " - other",
"exact_match,custom-extract": 0.6233766233766234,
"exact_match_stderr,custom-extract": 0.015948801100999506
},
"mmlu_pro_philosophy": {
"alias": " - philosophy",
"exact_match,custom-extract": 0.5410821643286573,
"exact_match_stderr,custom-extract": 0.022329778044085976
},
"mmlu_pro_physics": {
"alias": " - physics",
"exact_match,custom-extract": 0.45573518090839105,
"exact_match_stderr,custom-extract": 0.013823692447181207
},
"mmlu_pro_psychology": {
"alias": " - psychology",
"exact_match,custom-extract": 0.7205513784461153,
"exact_match_stderr,custom-extract": 0.015894771970426862
}
},
"groups": {
"mmlu_pro": {
"exact_match,custom-extract": 0.5244348404255319,
"exact_match_stderr,custom-extract": 0.004361486625586025,
"alias": "mmlu_pro"
}
},
"group_subtasks": {
"mmlu_pro": [
"mmlu_pro_biology",
"mmlu_pro_business",
"mmlu_pro_chemistry",
"mmlu_pro_computer_science",
"mmlu_pro_economics",
"mmlu_pro_engineering",
"mmlu_pro_health",
"mmlu_pro_history",
"mmlu_pro_law",
"mmlu_pro_math",
"mmlu_pro_other",
"mmlu_pro_philosophy",
"mmlu_pro_physics",
"mmlu_pro_psychology"
]
},
"configs": {
"mmlu_pro_biology": {
"task": "mmlu_pro_biology",
"task_alias": "biology",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x147dd67edfc0>, subject='biology')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd67ee830>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about biology. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd67eda20>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_business": {
"task": "mmlu_pro_business",
"task_alias": "business",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x147dd6af3760>, subject='business')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd67ee0e0>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about business. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd67ed630>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_chemistry": {
"task": "mmlu_pro_chemistry",
"task_alias": "chemistry",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x147dd6af3c70>, subject='chemistry')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd67edc60>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about chemistry. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd67ef130>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_computer_science": {
"task": "mmlu_pro_computer_science",
"task_alias": "computer_science",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x147dd6af3b50>, subject='computer science')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd6af2b00>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about computer science. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd67ec700>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_economics": {
"task": "mmlu_pro_economics",
"task_alias": "economics",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x147dd67ed480>, subject='economics')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd67ed510>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about economics. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd67ecaf0>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_engineering": {
"task": "mmlu_pro_engineering",
"task_alias": "engineering",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x147dd67ef6d0>, subject='engineering')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd67ec8b0>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about engineering. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd67ec790>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_health": {
"task": "mmlu_pro_health",
"task_alias": "health",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x147dd6af28c0>, subject='health')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd6af2560>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about health. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd6af24d0>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_history": {
"task": "mmlu_pro_history",
"task_alias": "history",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x147dd6af36d0>, subject='history')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd6af3f40>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about history. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd6af39a0>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_law": {
"task": "mmlu_pro_law",
"task_alias": "law",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x147dd6af23b0>, subject='law')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd6af2d40>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about law. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd6af2a70>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_math": {
"task": "mmlu_pro_math",
"task_alias": "math",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x147dd67ed990>, subject='math')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd67ee5f0>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about math. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd67ee4d0>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_other": {
"task": "mmlu_pro_other",
"task_alias": "other",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x147dd67ec0d0>, subject='other')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd67ec040>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about other. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd67ec1f0>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_philosophy": {
"task": "mmlu_pro_philosophy",
"task_alias": "philosophy",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x147dd6af3400>, subject='philosophy')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd6af3520>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about philosophy. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd6af2cb0>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_physics": {
"task": "mmlu_pro_physics",
"task_alias": "physics",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x147dd6af3250>, subject='physics')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd6af3d00>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about physics. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd6af32e0>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"mmlu_pro_psychology": {
"task": "mmlu_pro_psychology",
"task_alias": "psychology",
"dataset_path": "TIGER-Lab/MMLU-Pro",
"test_split": "test",
"fewshot_split": "validation",
"process_docs": "functools.partial(<function process_docs at 0x147dd6a0e5f0>, subject='psychology')",
"doc_to_text": "functools.partial(<function format_cot_example at 0x1480b6ee2710>, including_answer=False)",
"doc_to_target": "answer",
"description": "The following are multiple choice questions (with answers) about psychology. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n",
"doc_to_text": "functools.partial(<function format_cot_example at 0x147dd6a0c430>, including_answer=True)",
"doc_to_target": ""
},
"num_fewshot": 5,
"metric_list": [
{
"metric": "exact_match",
"aggregation": "mean",
"higher_is_better": true,
"ignore_case": true,
"ignore_punctuation": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [
"</s>",
"Q:",
"<|im_end|>"
],
"do_sample": false,
"temperature": 0.0
},
"repeats": 1,
"filter_list": [
{
"name": "custom-extract",
"filter": [
{
"function": "regex",
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
},
{
"function": "take_first"
}
]
}
],
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
}
},
"versions": {
"mmlu_pro": 2.0,
"mmlu_pro_biology": 1.0,
"mmlu_pro_business": 1.0,
"mmlu_pro_chemistry": 1.0,
"mmlu_pro_computer_science": 1.0,
"mmlu_pro_economics": 1.0,
"mmlu_pro_engineering": 1.0,
"mmlu_pro_health": 1.0,
"mmlu_pro_history": 1.0,
"mmlu_pro_law": 1.0,
"mmlu_pro_math": 1.0,
"mmlu_pro_other": 1.0,
"mmlu_pro_philosophy": 1.0,
"mmlu_pro_physics": 1.0,
"mmlu_pro_psychology": 1.0
},
"n-shot": {
"mmlu_pro_biology": 5,
"mmlu_pro_business": 5,
"mmlu_pro_chemistry": 5,
"mmlu_pro_computer_science": 5,
"mmlu_pro_economics": 5,
"mmlu_pro_engineering": 5,
"mmlu_pro_health": 5,
"mmlu_pro_history": 5,
"mmlu_pro_law": 5,
"mmlu_pro_math": 5,
"mmlu_pro_other": 5,
"mmlu_pro_philosophy": 5,
"mmlu_pro_physics": 5,
"mmlu_pro_psychology": 5
},
"higher_is_better": {
"mmlu_pro": {
"exact_match": true
},
"mmlu_pro_biology": {
"exact_match": true
},
"mmlu_pro_business": {
"exact_match": true
},
"mmlu_pro_chemistry": {
"exact_match": true
},
"mmlu_pro_computer_science": {
"exact_match": true
},
"mmlu_pro_economics": {
"exact_match": true
},
"mmlu_pro_engineering": {
"exact_match": true
},
"mmlu_pro_health": {
"exact_match": true
},
"mmlu_pro_history": {
"exact_match": true
},
"mmlu_pro_law": {
"exact_match": true
},
"mmlu_pro_math": {
"exact_match": true
},
"mmlu_pro_other": {
"exact_match": true
},
"mmlu_pro_philosophy": {
"exact_match": true
},
"mmlu_pro_physics": {
"exact_match": true
},
"mmlu_pro_psychology": {
"exact_match": true
}
},
"n-samples": {
"mmlu_pro_biology": {
"original": 717,
"effective": 717
},
"mmlu_pro_business": {
"original": 789,
"effective": 789
},
"mmlu_pro_chemistry": {
"original": 1132,
"effective": 1132
},
"mmlu_pro_computer_science": {
"original": 410,
"effective": 410
},
"mmlu_pro_economics": {
"original": 844,
"effective": 844
},
"mmlu_pro_engineering": {
"original": 969,
"effective": 969
},
"mmlu_pro_health": {
"original": 818,
"effective": 818
},
"mmlu_pro_history": {
"original": 381,
"effective": 381
},
"mmlu_pro_law": {
"original": 1101,
"effective": 1101
},
"mmlu_pro_math": {
"original": 1351,
"effective": 1351
},
"mmlu_pro_other": {
"original": 924,
"effective": 924
},
"mmlu_pro_philosophy": {
"original": 499,
"effective": 499
},
"mmlu_pro_physics": {
"original": 1299,
"effective": 1299
},
"mmlu_pro_psychology": {
"original": 798,
"effective": 798
}
},
"config": {
"model": "vllm",
"model_args": "pretrained=Qwen/Qwen2.5-14B-Instruct,tensor_parallel_size=4,data_parallel_size=2,download_dir=/tmp",
"batch_size": 1,
"batch_sizes": [],
"device": null,
"use_cache": null,
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null,
"random_seed": 0,
"numpy_seed": 1234,
"torch_seed": 1234,
"fewshot_seed": 1234
},
"git_hash": "788a3672",
"date": 1738828783.141779,
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA H100 80GB HBM3\nGPU 1: NVIDIA H100 80GB HBM3\nGPU 2: NVIDIA H100 80GB HBM3\nGPU 3: NVIDIA H100 80GB HBM3\nGPU 4: NVIDIA H100 80GB HBM3\nGPU 5: NVIDIA H100 80GB HBM3\nGPU 6: NVIDIA H100 80GB HBM3\nGPU 7: NVIDIA H100 80GB HBM3\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 57 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) Platinum 8480C\nCPU family: 6\nModel: 143\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 8\nBogoMIPS: 4000.00\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx_vnni avx512_bf16 avx512vbmi umip waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid cldemote movdiri movdir64b fsrm serialize amx_bf16 avx512_fp16 amx_tile amx_int8 arch_capabilities\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 4.5 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 192 MiB (96 instances)\nL3 cache: 210 MiB (2 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-47\nNUMA node1 CPU(s): 48-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Unknown: No mitigations\nVulnerability Retbleed: Vulnerable\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Retpoline\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
"transformers_version": "4.48.2",
"upper_git_hash": null,
"tokenizer_pad_token": [
"<|endoftext|>",
"151643"
],
"tokenizer_eos_token": [
"<|im_end|>",
"151645"
],
"tokenizer_bos_token": [
null,
"None"
],
"eot_token_id": 151645,
"max_length": 32768,
"task_hashes": {
"mmlu_pro_biology": "78a27f3d4ea386dd0f7b5045f25bf654ba560ee9feac7b22eab763c73b4c37b9",
"mmlu_pro_business": "9d10f8702f23d8d5aa9546ebf453e9333a6998a272450bc468b8f74bca8a1824",
"mmlu_pro_chemistry": "0e3a8823fed7bd895e42f5053851f12b125f62edfcb36809e4c0aebec80f4506",
"mmlu_pro_computer_science": "26e8d9026807a7552684e4ddd1a373873449548e0f0ac8abeada18f32cc5f685",
"mmlu_pro_economics": "427580d476e69dc8f095f487f3081cbff1dbfdd3a05a4c13c024ae5bd6907262",
"mmlu_pro_engineering": "66bc34b22bf2c19eab04a753e65e8aea2e6834544b27516a6aa2769a9be0b9e5",
"mmlu_pro_health": "62edd914028ea5b83013192e458af0d22b843d25ce0ac6e280244d819615cdc4",
"mmlu_pro_history": "8295796e4901f2a6b42a2bd8b6e888f2e64ae24ce451f8ecef70db6351f3583d",
"mmlu_pro_law": "6969a0ecb6ac565ee29e658094231ddcf1016237aff3d903f5d219dd68a2e5dd",
"mmlu_pro_math": "eb48989afd83cb45e2dfd8c769fbe986927de9eb06ac775a7237e939150f20ec",
"mmlu_pro_other": "82e12fde3ce84ca4d478ce4623e9dd3877b8bd46c7fc1346c3d9e534df9cbba3",
"mmlu_pro_philosophy": "1cd86d5d342a6029560af9a2d51e397df4f537d81d4e6249a0917267c91073e1",
"mmlu_pro_physics": "dce786711af6f503b9b1463ca9e245de515859363f4ee7f0aa94656c3357a288",
"mmlu_pro_psychology": "526f25dba79a26df39f911b7d6010990c8e21d7c473c89a94e4298566d7cdeda"
},
"model_source": "vllm",
"model_name": "Qwen/Qwen2.5-14B-Instruct",
"model_name_sanitized": "Qwen__Qwen2.5-14B-Instruct",
"system_instruction": null,
"system_instruction_sha": null,
"fewshot_as_multiturn": false,
"chat_template": null,
"chat_template_sha": null,
"start_time": 629513.139791946,
"end_time": 630076.356428782,
"total_evaluation_time_seconds": "563.2166368359467"
}