naazahrani's picture
Adding evaluation results
661e616 verified
{
"results": {
"agieval": {
"acc,none": 0.7109337203676827,
"acc_stderr,none": 0.00411658454162476,
"alias": "agieval"
},
"agieval_aqua_rat": {
"alias": " - agieval_aqua_rat",
"acc,none": 0.5905511811023622,
"acc_stderr,none": 0.03091493387931976,
"acc_norm,none": 0.5787401574803149,
"acc_norm_stderr,none": 0.031042492081410127
},
"agieval_gaokao_biology": {
"alias": " - agieval_gaokao_biology",
"acc,none": 0.9285714285714286,
"acc_stderr,none": 0.017814371196065843,
"acc_norm,none": 0.9285714285714286,
"acc_norm_stderr,none": 0.017814371196065843
},
"agieval_gaokao_chemistry": {
"alias": " - agieval_gaokao_chemistry",
"acc,none": 0.8405797101449275,
"acc_stderr,none": 0.02550513569429598,
"acc_norm,none": 0.7777777777777778,
"acc_norm_stderr,none": 0.028965958105927822
},
"agieval_gaokao_chinese": {
"alias": " - agieval_gaokao_chinese",
"acc,none": 0.8902439024390244,
"acc_stderr,none": 0.019970355234713685,
"acc_norm,none": 0.8739837398373984,
"acc_norm_stderr,none": 0.021202248854272642
},
"agieval_gaokao_english": {
"alias": " - agieval_gaokao_english",
"acc,none": 0.8104575163398693,
"acc_stderr,none": 0.022442358263336182,
"acc_norm,none": 0.8398692810457516,
"acc_norm_stderr,none": 0.020998740930362303
},
"agieval_gaokao_geography": {
"alias": " - agieval_gaokao_geography",
"acc,none": 0.8994974874371859,
"acc_stderr,none": 0.02136760475548775,
"acc_norm,none": 0.8994974874371859,
"acc_norm_stderr,none": 0.02136760475548775
},
"agieval_gaokao_history": {
"alias": " - agieval_gaokao_history",
"acc,none": 0.9319148936170213,
"acc_stderr,none": 0.0164666880348399,
"acc_norm,none": 0.9659574468085106,
"acc_norm_stderr,none": 0.01185446970478215
},
"agieval_gaokao_mathcloze": {
"alias": " - agieval_gaokao_mathcloze",
"acc,none": 0.11016949152542373,
"acc_stderr,none": 0.02894618860440566
},
"agieval_gaokao_mathqa": {
"alias": " - agieval_gaokao_mathqa",
"acc,none": 0.6609686609686609,
"acc_stderr,none": 0.025303251636666108,
"acc_norm,none": 0.6410256410256411,
"acc_norm_stderr,none": 0.025641025641025647
},
"agieval_gaokao_physics": {
"alias": " - agieval_gaokao_physics",
"acc,none": 0.92,
"acc_stderr,none": 0.01923146500480799,
"acc_norm,none": 0.905,
"acc_norm_stderr,none": 0.02078545587374491
},
"agieval_jec_qa_ca": {
"alias": " - agieval_jec_qa_ca",
"acc,none": 0.8758758758758759,
"acc_stderr,none": 0.01043720251442883,
"acc_norm,none": 0.8548548548548549,
"acc_norm_stderr,none": 0.011150187682575276
},
"agieval_jec_qa_kd": {
"alias": " - agieval_jec_qa_kd",
"acc,none": 0.92,
"acc_stderr,none": 0.008583336977753651,
"acc_norm,none": 0.887,
"acc_norm_stderr,none": 0.010016552866696856
},
"agieval_logiqa_en": {
"alias": " - agieval_logiqa_en",
"acc,none": 0.6267281105990783,
"acc_stderr,none": 0.01897123271547206,
"acc_norm,none": 0.6129032258064516,
"acc_norm_stderr,none": 0.01910508839198029
},
"agieval_logiqa_zh": {
"alias": " - agieval_logiqa_zh",
"acc,none": 0.7096774193548387,
"acc_stderr,none": 0.01780386214853801,
"acc_norm,none": 0.6927803379416283,
"acc_norm_stderr,none": 0.018095292260828216
},
"agieval_lsat_ar": {
"alias": " - agieval_lsat_ar",
"acc,none": 0.30869565217391304,
"acc_stderr,none": 0.03052686171290101,
"acc_norm,none": 0.2956521739130435,
"acc_norm_stderr,none": 0.030155489768916202
},
"agieval_lsat_lr": {
"alias": " - agieval_lsat_lr",
"acc,none": 0.8509803921568627,
"acc_stderr,none": 0.015784200670552844,
"acc_norm,none": 0.8450980392156863,
"acc_norm_stderr,none": 0.016036999418614126
},
"agieval_lsat_rc": {
"alias": " - agieval_lsat_rc",
"acc,none": 0.8475836431226765,
"acc_stderr,none": 0.021955315121071486,
"acc_norm,none": 0.8327137546468402,
"acc_norm_stderr,none": 0.022798726518245306
},
"agieval_math": {
"alias": " - agieval_math",
"acc,none": 0.161,
"acc_stderr,none": 0.011628164696727181
},
"agieval_sat_en": {
"alias": " - agieval_sat_en",
"acc,none": 0.9368932038834952,
"acc_stderr,none": 0.016982678176624688,
"acc_norm,none": 0.9223300970873787,
"acc_norm_stderr,none": 0.018693586887038226
},
"agieval_sat_en_without_passage": {
"alias": " - agieval_sat_en_without_passage",
"acc,none": 0.6359223300970874,
"acc_stderr,none": 0.03360641055142778,
"acc_norm,none": 0.6067961165048543,
"acc_norm_stderr,none": 0.034115627597025605
},
"agieval_sat_math": {
"alias": " - agieval_sat_math",
"acc,none": 0.8272727272727273,
"acc_stderr,none": 0.025543638189954865,
"acc_norm,none": 0.7954545454545454,
"acc_norm_stderr,none": 0.027257156202504098
}
},
"groups": {
"agieval": {
"acc,none": 0.7109337203676827,
"acc_stderr,none": 0.00411658454162476,
"alias": "agieval"
}
},
"group_subtasks": {
"agieval": [
"agieval_gaokao_biology",
"agieval_gaokao_chemistry",
"agieval_gaokao_chinese",
"agieval_gaokao_geography",
"agieval_gaokao_history",
"agieval_gaokao_mathcloze",
"agieval_gaokao_mathqa",
"agieval_gaokao_physics",
"agieval_jec_qa_ca",
"agieval_jec_qa_kd",
"agieval_logiqa_zh",
"agieval_aqua_rat",
"agieval_gaokao_english",
"agieval_logiqa_en",
"agieval_lsat_ar",
"agieval_lsat_lr",
"agieval_lsat_rc",
"agieval_math",
"agieval_sat_en_without_passage",
"agieval_sat_en",
"agieval_sat_math"
]
},
"configs": {
"agieval_aqua_rat": {
"task": "agieval_aqua_rat",
"dataset_path": "hails/agieval-aqua-rat",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_biology": {
"task": "agieval_gaokao_biology",
"dataset_path": "hails/agieval-gaokao-biology",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_chemistry": {
"task": "agieval_gaokao_chemistry",
"dataset_path": "hails/agieval-gaokao-chemistry",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_chinese": {
"task": "agieval_gaokao_chinese",
"dataset_path": "hails/agieval-gaokao-chinese",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_english": {
"task": "agieval_gaokao_english",
"dataset_path": "hails/agieval-gaokao-english",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_geography": {
"task": "agieval_gaokao_geography",
"dataset_path": "hails/agieval-gaokao-geography",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_history": {
"task": "agieval_gaokao_history",
"dataset_path": "hails/agieval-gaokao-history",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_mathcloze": {
"task": "agieval_gaokao_mathcloze",
"dataset_path": "hails/agieval-gaokao-mathcloze",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{answer}}",
"process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n candidate = results[0]\n\n gold = doc[\"answer\"]\n\n if not gold:\n print(doc, candidate, gold)\n if is_equiv(candidate, gold):\n retval = 1\n else:\n retval = 0\n\n results = {\n \"acc\": retval,\n }\n return results\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"max_gen_toks": 32,
"do_sample": false,
"temperature": 0.0,
"until": [
"Q:"
]
},
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_mathqa": {
"task": "agieval_gaokao_mathqa",
"dataset_path": "hails/agieval-gaokao-mathqa",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_physics": {
"task": "agieval_gaokao_physics",
"dataset_path": "hails/agieval-gaokao-physics",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_jec_qa_ca": {
"task": "agieval_jec_qa_ca",
"dataset_path": "hails/agieval-jec-qa-ca",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_jec_qa_kd": {
"task": "agieval_jec_qa_kd",
"dataset_path": "hails/agieval-jec-qa-kd",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_logiqa_en": {
"task": "agieval_logiqa_en",
"dataset_path": "hails/agieval-logiqa-en",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_logiqa_zh": {
"task": "agieval_logiqa_zh",
"dataset_path": "hails/agieval-logiqa-zh",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_lsat_ar": {
"task": "agieval_lsat_ar",
"dataset_path": "hails/agieval-lsat-ar",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_lsat_lr": {
"task": "agieval_lsat_lr",
"dataset_path": "hails/agieval-lsat-lr",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_lsat_rc": {
"task": "agieval_lsat_rc",
"dataset_path": "hails/agieval-lsat-rc",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_math": {
"task": "agieval_math",
"dataset_path": "hails/agieval-math",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{answer}}",
"process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n candidate = results[0]\n\n gold = doc[\"answer\"]\n\n if not gold:\n print(doc, candidate, gold)\n if is_equiv(candidate, gold):\n retval = 1\n else:\n retval = 0\n\n results = {\n \"acc\": retval,\n }\n return results\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"max_gen_toks": 32,
"do_sample": false,
"temperature": 0.0,
"until": [
"Q:"
]
},
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_sat_en": {
"task": "agieval_sat_en",
"dataset_path": "hails/agieval-sat-en",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_sat_en_without_passage": {
"task": "agieval_sat_en_without_passage",
"dataset_path": "hails/agieval-sat-en-without-passage",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_sat_math": {
"task": "agieval_sat_math",
"dataset_path": "hails/agieval-sat-math",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
}
},
"versions": {
"agieval": 0.0,
"agieval_aqua_rat": 1.0,
"agieval_gaokao_biology": 1.0,
"agieval_gaokao_chemistry": 1.0,
"agieval_gaokao_chinese": 1.0,
"agieval_gaokao_english": 1.0,
"agieval_gaokao_geography": 1.0,
"agieval_gaokao_history": 1.0,
"agieval_gaokao_mathcloze": 1.0,
"agieval_gaokao_mathqa": 1.0,
"agieval_gaokao_physics": 1.0,
"agieval_jec_qa_ca": 1.0,
"agieval_jec_qa_kd": 1.0,
"agieval_logiqa_en": 1.0,
"agieval_logiqa_zh": 1.0,
"agieval_lsat_ar": 1.0,
"agieval_lsat_lr": 1.0,
"agieval_lsat_rc": 1.0,
"agieval_math": 1.0,
"agieval_sat_en": 1.0,
"agieval_sat_en_without_passage": 1.0,
"agieval_sat_math": 1.0
},
"n-shot": {
"agieval_aqua_rat": 0,
"agieval_gaokao_biology": 0,
"agieval_gaokao_chemistry": 0,
"agieval_gaokao_chinese": 0,
"agieval_gaokao_english": 0,
"agieval_gaokao_geography": 0,
"agieval_gaokao_history": 0,
"agieval_gaokao_mathcloze": 0,
"agieval_gaokao_mathqa": 0,
"agieval_gaokao_physics": 0,
"agieval_jec_qa_ca": 0,
"agieval_jec_qa_kd": 0,
"agieval_logiqa_en": 0,
"agieval_logiqa_zh": 0,
"agieval_lsat_ar": 0,
"agieval_lsat_lr": 0,
"agieval_lsat_rc": 0,
"agieval_math": 0,
"agieval_sat_en": 0,
"agieval_sat_en_without_passage": 0,
"agieval_sat_math": 0
},
"higher_is_better": {
"agieval": {
"acc": true,
"acc_norm": true
},
"agieval_aqua_rat": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_biology": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_chemistry": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_chinese": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_english": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_geography": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_history": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_mathcloze": {
"acc": true
},
"agieval_gaokao_mathqa": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_physics": {
"acc": true,
"acc_norm": true
},
"agieval_jec_qa_ca": {
"acc": true,
"acc_norm": true
},
"agieval_jec_qa_kd": {
"acc": true,
"acc_norm": true
},
"agieval_logiqa_en": {
"acc": true,
"acc_norm": true
},
"agieval_logiqa_zh": {
"acc": true,
"acc_norm": true
},
"agieval_lsat_ar": {
"acc": true,
"acc_norm": true
},
"agieval_lsat_lr": {
"acc": true,
"acc_norm": true
},
"agieval_lsat_rc": {
"acc": true,
"acc_norm": true
},
"agieval_math": {
"acc": true
},
"agieval_sat_en": {
"acc": true,
"acc_norm": true
},
"agieval_sat_en_without_passage": {
"acc": true,
"acc_norm": true
},
"agieval_sat_math": {
"acc": true,
"acc_norm": true
}
},
"n-samples": {
"agieval_gaokao_biology": {
"original": 210,
"effective": 210
},
"agieval_gaokao_chemistry": {
"original": 207,
"effective": 207
},
"agieval_gaokao_chinese": {
"original": 246,
"effective": 246
},
"agieval_gaokao_geography": {
"original": 199,
"effective": 199
},
"agieval_gaokao_history": {
"original": 235,
"effective": 235
},
"agieval_gaokao_mathcloze": {
"original": 118,
"effective": 118
},
"agieval_gaokao_mathqa": {
"original": 351,
"effective": 351
},
"agieval_gaokao_physics": {
"original": 200,
"effective": 200
},
"agieval_jec_qa_ca": {
"original": 999,
"effective": 999
},
"agieval_jec_qa_kd": {
"original": 1000,
"effective": 1000
},
"agieval_logiqa_zh": {
"original": 651,
"effective": 651
},
"agieval_aqua_rat": {
"original": 254,
"effective": 254
},
"agieval_gaokao_english": {
"original": 306,
"effective": 306
},
"agieval_logiqa_en": {
"original": 651,
"effective": 651
},
"agieval_lsat_ar": {
"original": 230,
"effective": 230
},
"agieval_lsat_lr": {
"original": 510,
"effective": 510
},
"agieval_lsat_rc": {
"original": 269,
"effective": 269
},
"agieval_math": {
"original": 1000,
"effective": 1000
},
"agieval_sat_en_without_passage": {
"original": 206,
"effective": 206
},
"agieval_sat_en": {
"original": 206,
"effective": 206
},
"agieval_sat_math": {
"original": 220,
"effective": 220
}
},
"config": {
"model": "hf",
"model_args": "pretrained=Qwen/Qwen2.5-72B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=True",
"model_num_parameters": 72706203648,
"model_dtype": "torch.bfloat16",
"model_revision": "main",
"model_sha": "d3d951150c1e5848237cd6a7ad11df4836aee842",
"batch_size": 1,
"batch_sizes": [],
"device": null,
"use_cache": null,
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null,
"random_seed": 0,
"numpy_seed": 1234,
"torch_seed": 1234,
"fewshot_seed": 1234
},
"git_hash": "8e1bd48d",
"date": 1736540156.5705156,
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.9\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.3.107\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\nGPU 2: NVIDIA A100 80GB PCIe\nGPU 3: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (12 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.15.0rc2\n[pip3] open_clip_torch==2.26.1\n[pip3] optree==0.10.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.2.0a0\n[pip3] torchdata==0.7.0a0\n[pip3] torchdiffeq==0.2.4\n[pip3] torchmetrics==1.4.1\n[pip3] torchsde==0.2.6\n[pip3] torchtext==0.17.0a0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
"transformers_version": "4.44.0",
"upper_git_hash": null,
"tokenizer_pad_token": [
"<|endoftext|>",
"151643"
],
"tokenizer_eos_token": [
"<|im_end|>",
"151645"
],
"tokenizer_bos_token": [
null,
"None"
],
"eot_token_id": 151645,
"max_length": 32768,
"task_hashes": {},
"model_source": "hf",
"model_name": "Qwen/Qwen2.5-72B-Instruct",
"model_name_sanitized": "Qwen__Qwen2.5-72B-Instruct",
"system_instruction": null,
"system_instruction_sha": null,
"fewshot_as_multiturn": false,
"chat_template": null,
"chat_template_sha": null,
"start_time": 396454.035052041,
"end_time": 402466.480592644,
"total_evaluation_time_seconds": "6012.445540603017"
}