|
{ |
|
"results": { |
|
"hellaswag": { |
|
"alias": "hellaswag", |
|
"acc,none": 0.704142601075483, |
|
"acc_stderr,none": 0.004554944020620517, |
|
"acc_norm,none": 0.8741286596295559, |
|
"acc_norm_stderr,none": 0.0033102639516986994 |
|
} |
|
}, |
|
"group_subtasks": { |
|
"hellaswag": [] |
|
}, |
|
"configs": { |
|
"hellaswag": { |
|
"task": "hellaswag", |
|
"tag": [ |
|
"multiple_choice" |
|
], |
|
"dataset_path": "hellaswag", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"training_split": "train", |
|
"validation_split": "validation", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n", |
|
"doc_to_text": "{{query}}", |
|
"doc_to_target": "{{label}}", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "acc_norm", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
} |
|
}, |
|
"versions": { |
|
"hellaswag": 1.0 |
|
}, |
|
"n-shot": { |
|
"hellaswag": 0 |
|
}, |
|
"higher_is_better": { |
|
"hellaswag": { |
|
"acc": true, |
|
"acc_norm": true |
|
} |
|
}, |
|
"n-samples": { |
|
"hellaswag": { |
|
"original": 10042, |
|
"effective": 10042 |
|
} |
|
}, |
|
"config": { |
|
"model": "hf", |
|
"model_args": "pretrained=Qwen/Qwen2.5-72B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=True", |
|
"model_num_parameters": 72706203648, |
|
"model_dtype": "torch.bfloat16", |
|
"model_revision": "main", |
|
"model_sha": "d3d951150c1e5848237cd6a7ad11df4836aee842", |
|
"batch_size": 1, |
|
"batch_sizes": [], |
|
"device": null, |
|
"use_cache": null, |
|
"limit": null, |
|
"bootstrap_iters": 100000, |
|
"gen_kwargs": null, |
|
"random_seed": 0, |
|
"numpy_seed": 1234, |
|
"torch_seed": 1234, |
|
"fewshot_seed": 1234 |
|
}, |
|
"git_hash": "8e1bd48d", |
|
"date": 1736548555.5636632, |
|
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.9\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.3.107\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\nGPU 2: NVIDIA A100 80GB PCIe\nGPU 3: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (12 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.15.0rc2\n[pip3] open_clip_torch==2.26.1\n[pip3] optree==0.10.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.2.0a0\n[pip3] torchdata==0.7.0a0\n[pip3] torchdiffeq==0.2.4\n[pip3] torchmetrics==1.4.1\n[pip3] torchsde==0.2.6\n[pip3] torchtext==0.17.0a0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect", |
|
"transformers_version": "4.44.0", |
|
"upper_git_hash": null, |
|
"tokenizer_pad_token": [ |
|
"<|endoftext|>", |
|
"151643" |
|
], |
|
"tokenizer_eos_token": [ |
|
"<|im_end|>", |
|
"151645" |
|
], |
|
"tokenizer_bos_token": [ |
|
null, |
|
"None" |
|
], |
|
"eot_token_id": 151645, |
|
"max_length": 32768, |
|
"task_hashes": {}, |
|
"model_source": "hf", |
|
"model_name": "Qwen/Qwen2.5-72B-Instruct", |
|
"model_name_sanitized": "Qwen__Qwen2.5-72B-Instruct", |
|
"system_instruction": null, |
|
"system_instruction_sha": null, |
|
"fewshot_as_multiturn": false, |
|
"chat_template": null, |
|
"chat_template_sha": null, |
|
"start_time": 404852.93430919, |
|
"end_time": 407851.931606447, |
|
"total_evaluation_time_seconds": "2998.997297256952" |
|
} |