|
{ |
|
"results": { |
|
"minerva_math": { |
|
"exact_match,none": 0.5404, |
|
"exact_match_stderr,none": 0.006329156492912962, |
|
"alias": "minerva_math" |
|
}, |
|
"minerva_math_algebra": { |
|
"alias": " - minerva_math_algebra", |
|
"exact_match,none": 0.6975568660488627, |
|
"exact_match_stderr,none": 0.013337343277327206 |
|
}, |
|
"minerva_math_counting_and_prob": { |
|
"alias": " - minerva_math_counting_and_prob", |
|
"exact_match,none": 0.6181434599156118, |
|
"exact_match_stderr,none": 0.022339023529697927 |
|
}, |
|
"minerva_math_geometry": { |
|
"alias": " - minerva_math_geometry", |
|
"exact_match,none": 0.4718162839248434, |
|
"exact_match_stderr,none": 0.02283310734668001 |
|
}, |
|
"minerva_math_intermediate_algebra": { |
|
"alias": " - minerva_math_intermediate_algebra", |
|
"exact_match,none": 0.2425249169435216, |
|
"exact_match_stderr,none": 0.01427115388695082 |
|
}, |
|
"minerva_math_num_theory": { |
|
"alias": " - minerva_math_num_theory", |
|
"exact_match,none": 0.5574074074074075, |
|
"exact_match_stderr,none": 0.02139410169502841 |
|
}, |
|
"minerva_math_prealgebra": { |
|
"alias": " - minerva_math_prealgebra", |
|
"exact_match,none": 0.8231917336394948, |
|
"exact_match_stderr,none": 0.012934276981827694 |
|
}, |
|
"minerva_math_precalc": { |
|
"alias": " - minerva_math_precalc", |
|
"exact_match,none": 0.21611721611721613, |
|
"exact_match_stderr,none": 0.01763079900123489 |
|
} |
|
}, |
|
"groups": { |
|
"minerva_math": { |
|
"exact_match,none": 0.5404, |
|
"exact_match_stderr,none": 0.006329156492912962, |
|
"alias": "minerva_math" |
|
} |
|
}, |
|
"group_subtasks": { |
|
"minerva_math": [ |
|
"minerva_math_algebra", |
|
"minerva_math_counting_and_prob", |
|
"minerva_math_geometry", |
|
"minerva_math_intermediate_algebra", |
|
"minerva_math_num_theory", |
|
"minerva_math_prealgebra", |
|
"minerva_math_precalc" |
|
] |
|
}, |
|
"configs": { |
|
"minerva_math_algebra": { |
|
"task": "minerva_math_algebra", |
|
"tag": [ |
|
"math_word_problems" |
|
], |
|
"group": [ |
|
"math_word_problems" |
|
], |
|
"dataset_path": "EleutherAI/hendrycks_math", |
|
"dataset_name": "algebra", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"training_split": "train", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": normalize_final_answer(\n remove_boxed(last_boxed_only_string(doc[\"solution\"]))\n ),\n }\n if getattr(doc, \"few_shot\", None) is not None:\n out_doc[\"few_shot\"] = True\n return out_doc\n\n return dataset.map(_process_doc)\n", |
|
"doc_to_text": "def doc_to_text(doc: dict) -> str:\n return \"Problem:\" + \"\\n\" + doc[\"problem\"] + \"\\n\\n\" + \"Solution:\"\n", |
|
"doc_to_target": "{{answer if few_shot is undefined else solution}}", |
|
"process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n candidates = results[0]\n\n unnormalized_answer = get_unnormalized_answer(candidates)\n answer = normalize_final_answer(unnormalized_answer)\n\n if is_equiv(answer, doc[\"answer\"]):\n retval = 1\n else:\n retval = 0\n\n results = {\n \"exact_match\": retval,\n }\n return results\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"samples": "<function list_fewshot_samples at 0x14f564151750>" |
|
}, |
|
"num_fewshot": 4, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"Problem:" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"minerva_math_counting_and_prob": { |
|
"task": "minerva_math_counting_and_prob", |
|
"tag": [ |
|
"math_word_problems" |
|
], |
|
"group": [ |
|
"math_word_problems" |
|
], |
|
"dataset_path": "EleutherAI/hendrycks_math", |
|
"dataset_name": "counting_and_probability", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"training_split": "train", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": normalize_final_answer(\n remove_boxed(last_boxed_only_string(doc[\"solution\"]))\n ),\n }\n if getattr(doc, \"few_shot\", None) is not None:\n out_doc[\"few_shot\"] = True\n return out_doc\n\n return dataset.map(_process_doc)\n", |
|
"doc_to_text": "def doc_to_text(doc: dict) -> str:\n return \"Problem:\" + \"\\n\" + doc[\"problem\"] + \"\\n\\n\" + \"Solution:\"\n", |
|
"doc_to_target": "{{answer if few_shot is undefined else solution}}", |
|
"process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n candidates = results[0]\n\n unnormalized_answer = get_unnormalized_answer(candidates)\n answer = normalize_final_answer(unnormalized_answer)\n\n if is_equiv(answer, doc[\"answer\"]):\n retval = 1\n else:\n retval = 0\n\n results = {\n \"exact_match\": retval,\n }\n return results\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"samples": "<function list_fewshot_samples at 0x14f56409b6d0>" |
|
}, |
|
"num_fewshot": 4, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"Problem:" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"minerva_math_geometry": { |
|
"task": "minerva_math_geometry", |
|
"tag": [ |
|
"math_word_problems" |
|
], |
|
"group": [ |
|
"math_word_problems" |
|
], |
|
"dataset_path": "EleutherAI/hendrycks_math", |
|
"dataset_name": "geometry", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"training_split": "train", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": normalize_final_answer(\n remove_boxed(last_boxed_only_string(doc[\"solution\"]))\n ),\n }\n if getattr(doc, \"few_shot\", None) is not None:\n out_doc[\"few_shot\"] = True\n return out_doc\n\n return dataset.map(_process_doc)\n", |
|
"doc_to_text": "def doc_to_text(doc: dict) -> str:\n return \"Problem:\" + \"\\n\" + doc[\"problem\"] + \"\\n\\n\" + \"Solution:\"\n", |
|
"doc_to_target": "{{answer if few_shot is undefined else solution}}", |
|
"process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n candidates = results[0]\n\n unnormalized_answer = get_unnormalized_answer(candidates)\n answer = normalize_final_answer(unnormalized_answer)\n\n if is_equiv(answer, doc[\"answer\"]):\n retval = 1\n else:\n retval = 0\n\n results = {\n \"exact_match\": retval,\n }\n return results\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"samples": "<function list_fewshot_samples at 0x14f564098790>" |
|
}, |
|
"num_fewshot": 4, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"Problem:" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"minerva_math_intermediate_algebra": { |
|
"task": "minerva_math_intermediate_algebra", |
|
"tag": [ |
|
"math_word_problems" |
|
], |
|
"group": [ |
|
"math_word_problems" |
|
], |
|
"dataset_path": "EleutherAI/hendrycks_math", |
|
"dataset_name": "intermediate_algebra", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"training_split": "train", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": normalize_final_answer(\n remove_boxed(last_boxed_only_string(doc[\"solution\"]))\n ),\n }\n if getattr(doc, \"few_shot\", None) is not None:\n out_doc[\"few_shot\"] = True\n return out_doc\n\n return dataset.map(_process_doc)\n", |
|
"doc_to_text": "def doc_to_text(doc: dict) -> str:\n return \"Problem:\" + \"\\n\" + doc[\"problem\"] + \"\\n\\n\" + \"Solution:\"\n", |
|
"doc_to_target": "{{answer if few_shot is undefined else solution}}", |
|
"process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n candidates = results[0]\n\n unnormalized_answer = get_unnormalized_answer(candidates)\n answer = normalize_final_answer(unnormalized_answer)\n\n if is_equiv(answer, doc[\"answer\"]):\n retval = 1\n else:\n retval = 0\n\n results = {\n \"exact_match\": retval,\n }\n return results\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"samples": "<function list_fewshot_samples at 0x14f564acdb40>" |
|
}, |
|
"num_fewshot": 4, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"Problem:" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"minerva_math_num_theory": { |
|
"task": "minerva_math_num_theory", |
|
"tag": [ |
|
"math_word_problems" |
|
], |
|
"group": [ |
|
"math_word_problems" |
|
], |
|
"dataset_path": "EleutherAI/hendrycks_math", |
|
"dataset_name": "number_theory", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"training_split": "train", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": normalize_final_answer(\n remove_boxed(last_boxed_only_string(doc[\"solution\"]))\n ),\n }\n if getattr(doc, \"few_shot\", None) is not None:\n out_doc[\"few_shot\"] = True\n return out_doc\n\n return dataset.map(_process_doc)\n", |
|
"doc_to_text": "def doc_to_text(doc: dict) -> str:\n return \"Problem:\" + \"\\n\" + doc[\"problem\"] + \"\\n\\n\" + \"Solution:\"\n", |
|
"doc_to_target": "{{answer if few_shot is undefined else solution}}", |
|
"process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n candidates = results[0]\n\n unnormalized_answer = get_unnormalized_answer(candidates)\n answer = normalize_final_answer(unnormalized_answer)\n\n if is_equiv(answer, doc[\"answer\"]):\n retval = 1\n else:\n retval = 0\n\n results = {\n \"exact_match\": retval,\n }\n return results\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"samples": "<function list_fewshot_samples at 0x14f564acc9d0>" |
|
}, |
|
"num_fewshot": 4, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"Problem:" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"minerva_math_prealgebra": { |
|
"task": "minerva_math_prealgebra", |
|
"tag": [ |
|
"math_word_problems" |
|
], |
|
"group": [ |
|
"math_word_problems" |
|
], |
|
"dataset_path": "EleutherAI/hendrycks_math", |
|
"dataset_name": "prealgebra", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"training_split": "train", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": normalize_final_answer(\n remove_boxed(last_boxed_only_string(doc[\"solution\"]))\n ),\n }\n if getattr(doc, \"few_shot\", None) is not None:\n out_doc[\"few_shot\"] = True\n return out_doc\n\n return dataset.map(_process_doc)\n", |
|
"doc_to_text": "def doc_to_text(doc: dict) -> str:\n return \"Problem:\" + \"\\n\" + doc[\"problem\"] + \"\\n\\n\" + \"Solution:\"\n", |
|
"doc_to_target": "{{answer if few_shot is undefined else solution}}", |
|
"process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n candidates = results[0]\n\n unnormalized_answer = get_unnormalized_answer(candidates)\n answer = normalize_final_answer(unnormalized_answer)\n\n if is_equiv(answer, doc[\"answer\"]):\n retval = 1\n else:\n retval = 0\n\n results = {\n \"exact_match\": retval,\n }\n return results\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"samples": "<function list_fewshot_samples at 0x14f564a1aa70>" |
|
}, |
|
"num_fewshot": 4, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"Problem:" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"minerva_math_precalc": { |
|
"task": "minerva_math_precalc", |
|
"tag": [ |
|
"math_word_problems" |
|
], |
|
"group": [ |
|
"math_word_problems" |
|
], |
|
"dataset_path": "EleutherAI/hendrycks_math", |
|
"dataset_name": "precalculus", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"training_split": "train", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc: dict) -> dict:\n out_doc = {\n \"problem\": doc[\"problem\"],\n \"solution\": doc[\"solution\"],\n \"answer\": normalize_final_answer(\n remove_boxed(last_boxed_only_string(doc[\"solution\"]))\n ),\n }\n if getattr(doc, \"few_shot\", None) is not None:\n out_doc[\"few_shot\"] = True\n return out_doc\n\n return dataset.map(_process_doc)\n", |
|
"doc_to_text": "def doc_to_text(doc: dict) -> str:\n return \"Problem:\" + \"\\n\" + doc[\"problem\"] + \"\\n\\n\" + \"Solution:\"\n", |
|
"doc_to_target": "{{answer if few_shot is undefined else solution}}", |
|
"process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n candidates = results[0]\n\n unnormalized_answer = get_unnormalized_answer(candidates)\n answer = normalize_final_answer(unnormalized_answer)\n\n if is_equiv(answer, doc[\"answer\"]):\n retval = 1\n else:\n retval = 0\n\n results = {\n \"exact_match\": retval,\n }\n return results\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"samples": "<function list_fewshot_samples at 0x14f565149240>" |
|
}, |
|
"num_fewshot": 4, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"Problem:" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
} |
|
}, |
|
"versions": { |
|
"minerva_math": 1.0, |
|
"minerva_math_algebra": 1.0, |
|
"minerva_math_counting_and_prob": 1.0, |
|
"minerva_math_geometry": 1.0, |
|
"minerva_math_intermediate_algebra": 1.0, |
|
"minerva_math_num_theory": 1.0, |
|
"minerva_math_prealgebra": 1.0, |
|
"minerva_math_precalc": 1.0 |
|
}, |
|
"n-shot": { |
|
"minerva_math_algebra": 4, |
|
"minerva_math_counting_and_prob": 4, |
|
"minerva_math_geometry": 4, |
|
"minerva_math_intermediate_algebra": 4, |
|
"minerva_math_num_theory": 4, |
|
"minerva_math_prealgebra": 4, |
|
"minerva_math_precalc": 4 |
|
}, |
|
"higher_is_better": { |
|
"minerva_math": { |
|
"exact_match": true |
|
}, |
|
"minerva_math_algebra": { |
|
"exact_match": true |
|
}, |
|
"minerva_math_counting_and_prob": { |
|
"exact_match": true |
|
}, |
|
"minerva_math_geometry": { |
|
"exact_match": true |
|
}, |
|
"minerva_math_intermediate_algebra": { |
|
"exact_match": true |
|
}, |
|
"minerva_math_num_theory": { |
|
"exact_match": true |
|
}, |
|
"minerva_math_prealgebra": { |
|
"exact_match": true |
|
}, |
|
"minerva_math_precalc": { |
|
"exact_match": true |
|
} |
|
}, |
|
"n-samples": { |
|
"minerva_math_algebra": { |
|
"original": 1187, |
|
"effective": 1187 |
|
}, |
|
"minerva_math_counting_and_prob": { |
|
"original": 474, |
|
"effective": 474 |
|
}, |
|
"minerva_math_geometry": { |
|
"original": 479, |
|
"effective": 479 |
|
}, |
|
"minerva_math_intermediate_algebra": { |
|
"original": 903, |
|
"effective": 903 |
|
}, |
|
"minerva_math_num_theory": { |
|
"original": 540, |
|
"effective": 540 |
|
}, |
|
"minerva_math_prealgebra": { |
|
"original": 871, |
|
"effective": 871 |
|
}, |
|
"minerva_math_precalc": { |
|
"original": 546, |
|
"effective": 546 |
|
} |
|
}, |
|
"config": { |
|
"model": "vllm", |
|
"model_args": "pretrained=Qwen/Qwen2.5-72B-Instruct,tensor_parallel_size=4,data_parallel_size=2,gpu_memory_utilization=0.9,download_dir=/tmp,enforce_eager=True", |
|
"batch_size": 1, |
|
"batch_sizes": [], |
|
"device": null, |
|
"use_cache": null, |
|
"limit": null, |
|
"bootstrap_iters": 100000, |
|
"gen_kwargs": null, |
|
"random_seed": 0, |
|
"numpy_seed": 1234, |
|
"torch_seed": 1234, |
|
"fewshot_seed": 1234 |
|
}, |
|
"git_hash": "150ae04f", |
|
"date": 1737581263.967978, |
|
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect", |
|
"transformers_version": "4.48.1", |
|
"upper_git_hash": "086919bd66f4e15fdcd4b792a7b27a698c1ba091", |
|
"tokenizer_pad_token": [ |
|
"<|endoftext|>", |
|
"151643" |
|
], |
|
"tokenizer_eos_token": [ |
|
"<|im_end|>", |
|
"151645" |
|
], |
|
"tokenizer_bos_token": [ |
|
null, |
|
"None" |
|
], |
|
"eot_token_id": 151645, |
|
"max_length": 32768, |
|
"task_hashes": {}, |
|
"model_source": "vllm", |
|
"model_name": "Qwen/Qwen2.5-72B-Instruct", |
|
"model_name_sanitized": "Qwen__Qwen2.5-72B-Instruct", |
|
"system_instruction": null, |
|
"system_instruction_sha": null, |
|
"fewshot_as_multiturn": false, |
|
"chat_template": null, |
|
"chat_template_sha": null, |
|
"start_time": 123284.451094621, |
|
"end_time": 124030.006792351, |
|
"total_evaluation_time_seconds": "745.5556977300002" |
|
} |