|
{ |
|
"results": { |
|
"mmlu_pro": { |
|
"exact_match,custom-extract": 0.2869847074468085, |
|
"exact_match_stderr,custom-extract": 0.004022169948060652, |
|
"alias": "mmlu_pro" |
|
}, |
|
"mmlu_pro_biology": { |
|
"alias": " - biology", |
|
"exact_match,custom-extract": 0.4755927475592748, |
|
"exact_match_stderr,custom-extract": 0.018663601164282482 |
|
}, |
|
"mmlu_pro_business": { |
|
"alias": " - business", |
|
"exact_match,custom-extract": 0.3269961977186312, |
|
"exact_match_stderr,custom-extract": 0.016711560347069408 |
|
}, |
|
"mmlu_pro_chemistry": { |
|
"alias": " - chemistry", |
|
"exact_match,custom-extract": 0.1431095406360424, |
|
"exact_match_stderr,custom-extract": 0.01041275488063699 |
|
}, |
|
"mmlu_pro_computer_science": { |
|
"alias": " - computer_science", |
|
"exact_match,custom-extract": 0.2634146341463415, |
|
"exact_match_stderr,custom-extract": 0.021780599960298064 |
|
}, |
|
"mmlu_pro_economics": { |
|
"alias": " - economics", |
|
"exact_match,custom-extract": 0.4028436018957346, |
|
"exact_match_stderr,custom-extract": 0.01689267757120823 |
|
}, |
|
"mmlu_pro_engineering": { |
|
"alias": " - engineering", |
|
"exact_match,custom-extract": 0.16305469556243551, |
|
"exact_match_stderr,custom-extract": 0.011873466052186874 |
|
}, |
|
"mmlu_pro_health": { |
|
"alias": " - health", |
|
"exact_match,custom-extract": 0.3019559902200489, |
|
"exact_match_stderr,custom-extract": 0.016062095317412695 |
|
}, |
|
"mmlu_pro_history": { |
|
"alias": " - history", |
|
"exact_match,custom-extract": 0.30971128608923887, |
|
"exact_match_stderr,custom-extract": 0.02371931288157772 |
|
}, |
|
"mmlu_pro_law": { |
|
"alias": " - law", |
|
"exact_match,custom-extract": 0.21071752951861944, |
|
"exact_match_stderr,custom-extract": 0.012296180200378141 |
|
}, |
|
"mmlu_pro_math": { |
|
"alias": " - math", |
|
"exact_match,custom-extract": 0.2923760177646188, |
|
"exact_match_stderr,custom-extract": 0.012379561471342802 |
|
}, |
|
"mmlu_pro_other": { |
|
"alias": " - other", |
|
"exact_match,custom-extract": 0.3246753246753247, |
|
"exact_match_stderr,custom-extract": 0.015412748807712297 |
|
}, |
|
"mmlu_pro_philosophy": { |
|
"alias": " - philosophy", |
|
"exact_match,custom-extract": 0.2965931863727455, |
|
"exact_match_stderr,custom-extract": 0.020467707358619427 |
|
}, |
|
"mmlu_pro_physics": { |
|
"alias": " - physics", |
|
"exact_match,custom-extract": 0.2040030792917629, |
|
"exact_match_stderr,custom-extract": 0.0111850185588914 |
|
}, |
|
"mmlu_pro_psychology": { |
|
"alias": " - psychology", |
|
"exact_match,custom-extract": 0.4774436090225564, |
|
"exact_match_stderr,custom-extract": 0.017692877201613152 |
|
} |
|
}, |
|
"groups": { |
|
"mmlu_pro": { |
|
"exact_match,custom-extract": 0.2869847074468085, |
|
"exact_match_stderr,custom-extract": 0.004022169948060652, |
|
"alias": "mmlu_pro" |
|
} |
|
}, |
|
"group_subtasks": { |
|
"mmlu_pro": [ |
|
"mmlu_pro_biology", |
|
"mmlu_pro_business", |
|
"mmlu_pro_chemistry", |
|
"mmlu_pro_computer_science", |
|
"mmlu_pro_economics", |
|
"mmlu_pro_engineering", |
|
"mmlu_pro_health", |
|
"mmlu_pro_history", |
|
"mmlu_pro_law", |
|
"mmlu_pro_math", |
|
"mmlu_pro_other", |
|
"mmlu_pro_philosophy", |
|
"mmlu_pro_physics", |
|
"mmlu_pro_psychology" |
|
] |
|
}, |
|
"configs": { |
|
"mmlu_pro_biology": { |
|
"task": "mmlu_pro_biology", |
|
"task_alias": "biology", |
|
"dataset_path": "TIGER-Lab/MMLU-Pro", |
|
"test_split": "test", |
|
"fewshot_split": "validation", |
|
"process_docs": "functools.partial(<function process_docs at 0x148cc34c4040>, subject='biology')", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34c4700>, including_answer=False)", |
|
"doc_to_target": "answer", |
|
"description": "The following are multiple choice questions (with answers) about biology. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34c70a0>, including_answer=True)", |
|
"doc_to_target": "" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true, |
|
"ignore_case": true, |
|
"ignore_punctuation": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"</s>", |
|
"Q:", |
|
"<|im_end|>" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "custom-extract", |
|
"filter": [ |
|
{ |
|
"function": "regex", |
|
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_pro_business": { |
|
"task": "mmlu_pro_business", |
|
"task_alias": "business", |
|
"dataset_path": "TIGER-Lab/MMLU-Pro", |
|
"test_split": "test", |
|
"fewshot_split": "validation", |
|
"process_docs": "functools.partial(<function process_docs at 0x148cc34c7d00>, subject='business')", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34c6440>, including_answer=False)", |
|
"doc_to_target": "answer", |
|
"description": "The following are multiple choice questions (with answers) about business. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34c68c0>, including_answer=True)", |
|
"doc_to_target": "" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true, |
|
"ignore_case": true, |
|
"ignore_punctuation": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"</s>", |
|
"Q:", |
|
"<|im_end|>" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "custom-extract", |
|
"filter": [ |
|
{ |
|
"function": "regex", |
|
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_pro_chemistry": { |
|
"task": "mmlu_pro_chemistry", |
|
"task_alias": "chemistry", |
|
"dataset_path": "TIGER-Lab/MMLU-Pro", |
|
"test_split": "test", |
|
"fewshot_split": "validation", |
|
"process_docs": "functools.partial(<function process_docs at 0x148cc34c7880>, subject='chemistry')", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34c6c20>, including_answer=False)", |
|
"doc_to_target": "answer", |
|
"description": "The following are multiple choice questions (with answers) about chemistry. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34c5120>, including_answer=True)", |
|
"doc_to_target": "" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true, |
|
"ignore_case": true, |
|
"ignore_punctuation": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"</s>", |
|
"Q:", |
|
"<|im_end|>" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "custom-extract", |
|
"filter": [ |
|
{ |
|
"function": "regex", |
|
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_pro_computer_science": { |
|
"task": "mmlu_pro_computer_science", |
|
"task_alias": "computer_science", |
|
"dataset_path": "TIGER-Lab/MMLU-Pro", |
|
"test_split": "test", |
|
"fewshot_split": "validation", |
|
"process_docs": "functools.partial(<function process_docs at 0x148cc34c6cb0>, subject='computer science')", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34c6170>, including_answer=False)", |
|
"doc_to_target": "answer", |
|
"description": "The following are multiple choice questions (with answers) about computer science. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34c7490>, including_answer=True)", |
|
"doc_to_target": "" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true, |
|
"ignore_case": true, |
|
"ignore_punctuation": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"</s>", |
|
"Q:", |
|
"<|im_end|>" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "custom-extract", |
|
"filter": [ |
|
{ |
|
"function": "regex", |
|
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_pro_economics": { |
|
"task": "mmlu_pro_economics", |
|
"task_alias": "economics", |
|
"dataset_path": "TIGER-Lab/MMLU-Pro", |
|
"test_split": "test", |
|
"fewshot_split": "validation", |
|
"process_docs": "functools.partial(<function process_docs at 0x148cc34c7b50>, subject='economics')", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34c4670>, including_answer=False)", |
|
"doc_to_target": "answer", |
|
"description": "The following are multiple choice questions (with answers) about economics. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34c4c10>, including_answer=True)", |
|
"doc_to_target": "" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true, |
|
"ignore_case": true, |
|
"ignore_punctuation": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"</s>", |
|
"Q:", |
|
"<|im_end|>" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "custom-extract", |
|
"filter": [ |
|
{ |
|
"function": "regex", |
|
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_pro_engineering": { |
|
"task": "mmlu_pro_engineering", |
|
"task_alias": "engineering", |
|
"dataset_path": "TIGER-Lab/MMLU-Pro", |
|
"test_split": "test", |
|
"fewshot_split": "validation", |
|
"process_docs": "functools.partial(<function process_docs at 0x148cc3433eb0>, subject='engineering')", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc3433ac0>, including_answer=False)", |
|
"doc_to_target": "answer", |
|
"description": "The following are multiple choice questions (with answers) about engineering. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34c75b0>, including_answer=True)", |
|
"doc_to_target": "" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true, |
|
"ignore_case": true, |
|
"ignore_punctuation": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"</s>", |
|
"Q:", |
|
"<|im_end|>" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "custom-extract", |
|
"filter": [ |
|
{ |
|
"function": "regex", |
|
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_pro_health": { |
|
"task": "mmlu_pro_health", |
|
"task_alias": "health", |
|
"dataset_path": "TIGER-Lab/MMLU-Pro", |
|
"test_split": "test", |
|
"fewshot_split": "validation", |
|
"process_docs": "functools.partial(<function process_docs at 0x148cc3432b00>, subject='health')", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34332e0>, including_answer=False)", |
|
"doc_to_target": "answer", |
|
"description": "The following are multiple choice questions (with answers) about health. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc3432cb0>, including_answer=True)", |
|
"doc_to_target": "" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true, |
|
"ignore_case": true, |
|
"ignore_punctuation": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"</s>", |
|
"Q:", |
|
"<|im_end|>" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "custom-extract", |
|
"filter": [ |
|
{ |
|
"function": "regex", |
|
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_pro_history": { |
|
"task": "mmlu_pro_history", |
|
"task_alias": "history", |
|
"dataset_path": "TIGER-Lab/MMLU-Pro", |
|
"test_split": "test", |
|
"fewshot_split": "validation", |
|
"process_docs": "functools.partial(<function process_docs at 0x148cc34c6320>, subject='history')", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34c4550>, including_answer=False)", |
|
"doc_to_target": "answer", |
|
"description": "The following are multiple choice questions (with answers) about history. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34c44c0>, including_answer=True)", |
|
"doc_to_target": "" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true, |
|
"ignore_case": true, |
|
"ignore_punctuation": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"</s>", |
|
"Q:", |
|
"<|im_end|>" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "custom-extract", |
|
"filter": [ |
|
{ |
|
"function": "regex", |
|
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_pro_law": { |
|
"task": "mmlu_pro_law", |
|
"task_alias": "law", |
|
"dataset_path": "TIGER-Lab/MMLU-Pro", |
|
"test_split": "test", |
|
"fewshot_split": "validation", |
|
"process_docs": "functools.partial(<function process_docs at 0x148cc3432ef0>, subject='law')", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34331c0>, including_answer=False)", |
|
"doc_to_target": "answer", |
|
"description": "The following are multiple choice questions (with answers) about law. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34336d0>, including_answer=True)", |
|
"doc_to_target": "" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true, |
|
"ignore_case": true, |
|
"ignore_punctuation": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"</s>", |
|
"Q:", |
|
"<|im_end|>" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "custom-extract", |
|
"filter": [ |
|
{ |
|
"function": "regex", |
|
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_pro_math": { |
|
"task": "mmlu_pro_math", |
|
"task_alias": "math", |
|
"dataset_path": "TIGER-Lab/MMLU-Pro", |
|
"test_split": "test", |
|
"fewshot_split": "validation", |
|
"process_docs": "functools.partial(<function process_docs at 0x148cc34c5ea0>, subject='math')", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34c45e0>, including_answer=False)", |
|
"doc_to_target": "answer", |
|
"description": "The following are multiple choice questions (with answers) about math. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34c5e10>, including_answer=True)", |
|
"doc_to_target": "" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true, |
|
"ignore_case": true, |
|
"ignore_punctuation": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"</s>", |
|
"Q:", |
|
"<|im_end|>" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "custom-extract", |
|
"filter": [ |
|
{ |
|
"function": "regex", |
|
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_pro_other": { |
|
"task": "mmlu_pro_other", |
|
"task_alias": "other", |
|
"dataset_path": "TIGER-Lab/MMLU-Pro", |
|
"test_split": "test", |
|
"fewshot_split": "validation", |
|
"process_docs": "functools.partial(<function process_docs at 0x148cc3433b50>, subject='other')", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34337f0>, including_answer=False)", |
|
"doc_to_target": "answer", |
|
"description": "The following are multiple choice questions (with answers) about other. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34329e0>, including_answer=True)", |
|
"doc_to_target": "" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true, |
|
"ignore_case": true, |
|
"ignore_punctuation": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"</s>", |
|
"Q:", |
|
"<|im_end|>" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "custom-extract", |
|
"filter": [ |
|
{ |
|
"function": "regex", |
|
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_pro_philosophy": { |
|
"task": "mmlu_pro_philosophy", |
|
"task_alias": "philosophy", |
|
"dataset_path": "TIGER-Lab/MMLU-Pro", |
|
"test_split": "test", |
|
"fewshot_split": "validation", |
|
"process_docs": "functools.partial(<function process_docs at 0x148cc34c41f0>, subject='philosophy')", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34c4160>, including_answer=False)", |
|
"doc_to_target": "answer", |
|
"description": "The following are multiple choice questions (with answers) about philosophy. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc34c7a30>, including_answer=True)", |
|
"doc_to_target": "" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true, |
|
"ignore_case": true, |
|
"ignore_punctuation": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"</s>", |
|
"Q:", |
|
"<|im_end|>" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "custom-extract", |
|
"filter": [ |
|
{ |
|
"function": "regex", |
|
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_pro_physics": { |
|
"task": "mmlu_pro_physics", |
|
"task_alias": "physics", |
|
"dataset_path": "TIGER-Lab/MMLU-Pro", |
|
"test_split": "test", |
|
"fewshot_split": "validation", |
|
"process_docs": "functools.partial(<function process_docs at 0x148cc3433250>, subject='physics')", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc3432830>, including_answer=False)", |
|
"doc_to_target": "answer", |
|
"description": "The following are multiple choice questions (with answers) about physics. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc3432e60>, including_answer=True)", |
|
"doc_to_target": "" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true, |
|
"ignore_case": true, |
|
"ignore_punctuation": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"</s>", |
|
"Q:", |
|
"<|im_end|>" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "custom-extract", |
|
"filter": [ |
|
{ |
|
"function": "regex", |
|
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_pro_psychology": { |
|
"task": "mmlu_pro_psychology", |
|
"task_alias": "psychology", |
|
"dataset_path": "TIGER-Lab/MMLU-Pro", |
|
"test_split": "test", |
|
"fewshot_split": "validation", |
|
"process_docs": "functools.partial(<function process_docs at 0x148cc4643910>, subject='psychology')", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc4642200>, including_answer=False)", |
|
"doc_to_target": "answer", |
|
"description": "The following are multiple choice questions (with answers) about psychology. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n", |
|
"doc_to_text": "functools.partial(<function format_cot_example at 0x148cc46423b0>, including_answer=True)", |
|
"doc_to_target": "" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true, |
|
"ignore_case": true, |
|
"ignore_punctuation": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"</s>", |
|
"Q:", |
|
"<|im_end|>" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "custom-extract", |
|
"filter": [ |
|
{ |
|
"function": "regex", |
|
"regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
} |
|
}, |
|
"versions": { |
|
"mmlu_pro": 2.0, |
|
"mmlu_pro_biology": 1.0, |
|
"mmlu_pro_business": 1.0, |
|
"mmlu_pro_chemistry": 1.0, |
|
"mmlu_pro_computer_science": 1.0, |
|
"mmlu_pro_economics": 1.0, |
|
"mmlu_pro_engineering": 1.0, |
|
"mmlu_pro_health": 1.0, |
|
"mmlu_pro_history": 1.0, |
|
"mmlu_pro_law": 1.0, |
|
"mmlu_pro_math": 1.0, |
|
"mmlu_pro_other": 1.0, |
|
"mmlu_pro_philosophy": 1.0, |
|
"mmlu_pro_physics": 1.0, |
|
"mmlu_pro_psychology": 1.0 |
|
}, |
|
"n-shot": { |
|
"mmlu_pro_biology": 5, |
|
"mmlu_pro_business": 5, |
|
"mmlu_pro_chemistry": 5, |
|
"mmlu_pro_computer_science": 5, |
|
"mmlu_pro_economics": 5, |
|
"mmlu_pro_engineering": 5, |
|
"mmlu_pro_health": 5, |
|
"mmlu_pro_history": 5, |
|
"mmlu_pro_law": 5, |
|
"mmlu_pro_math": 5, |
|
"mmlu_pro_other": 5, |
|
"mmlu_pro_philosophy": 5, |
|
"mmlu_pro_physics": 5, |
|
"mmlu_pro_psychology": 5 |
|
}, |
|
"higher_is_better": { |
|
"mmlu_pro": { |
|
"exact_match": true |
|
}, |
|
"mmlu_pro_biology": { |
|
"exact_match": true |
|
}, |
|
"mmlu_pro_business": { |
|
"exact_match": true |
|
}, |
|
"mmlu_pro_chemistry": { |
|
"exact_match": true |
|
}, |
|
"mmlu_pro_computer_science": { |
|
"exact_match": true |
|
}, |
|
"mmlu_pro_economics": { |
|
"exact_match": true |
|
}, |
|
"mmlu_pro_engineering": { |
|
"exact_match": true |
|
}, |
|
"mmlu_pro_health": { |
|
"exact_match": true |
|
}, |
|
"mmlu_pro_history": { |
|
"exact_match": true |
|
}, |
|
"mmlu_pro_law": { |
|
"exact_match": true |
|
}, |
|
"mmlu_pro_math": { |
|
"exact_match": true |
|
}, |
|
"mmlu_pro_other": { |
|
"exact_match": true |
|
}, |
|
"mmlu_pro_philosophy": { |
|
"exact_match": true |
|
}, |
|
"mmlu_pro_physics": { |
|
"exact_match": true |
|
}, |
|
"mmlu_pro_psychology": { |
|
"exact_match": true |
|
} |
|
}, |
|
"n-samples": { |
|
"mmlu_pro_biology": { |
|
"original": 717, |
|
"effective": 717 |
|
}, |
|
"mmlu_pro_business": { |
|
"original": 789, |
|
"effective": 789 |
|
}, |
|
"mmlu_pro_chemistry": { |
|
"original": 1132, |
|
"effective": 1132 |
|
}, |
|
"mmlu_pro_computer_science": { |
|
"original": 410, |
|
"effective": 410 |
|
}, |
|
"mmlu_pro_economics": { |
|
"original": 844, |
|
"effective": 844 |
|
}, |
|
"mmlu_pro_engineering": { |
|
"original": 969, |
|
"effective": 969 |
|
}, |
|
"mmlu_pro_health": { |
|
"original": 818, |
|
"effective": 818 |
|
}, |
|
"mmlu_pro_history": { |
|
"original": 381, |
|
"effective": 381 |
|
}, |
|
"mmlu_pro_law": { |
|
"original": 1101, |
|
"effective": 1101 |
|
}, |
|
"mmlu_pro_math": { |
|
"original": 1351, |
|
"effective": 1351 |
|
}, |
|
"mmlu_pro_other": { |
|
"original": 924, |
|
"effective": 924 |
|
}, |
|
"mmlu_pro_philosophy": { |
|
"original": 499, |
|
"effective": 499 |
|
}, |
|
"mmlu_pro_physics": { |
|
"original": 1299, |
|
"effective": 1299 |
|
}, |
|
"mmlu_pro_psychology": { |
|
"original": 798, |
|
"effective": 798 |
|
} |
|
}, |
|
"config": { |
|
"model": "vllm", |
|
"model_args": "pretrained=inceptionai/jais-family-30b-8k-chat,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.98,download_dir=/tmp,enforce_eager=True", |
|
"batch_size": 1, |
|
"batch_sizes": [], |
|
"device": null, |
|
"use_cache": null, |
|
"limit": null, |
|
"bootstrap_iters": 100000, |
|
"gen_kwargs": null, |
|
"random_seed": 0, |
|
"numpy_seed": 1234, |
|
"torch_seed": 1234, |
|
"fewshot_seed": 1234 |
|
}, |
|
"git_hash": "8e1bd48d", |
|
"date": 1735994250.724327, |
|
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect", |
|
"transformers_version": "4.47.1", |
|
"upper_git_hash": "f64fe2f2a86055aaecced603b56097fd79201711", |
|
"tokenizer_pad_token": [ |
|
"<|endoftext|>", |
|
"0" |
|
], |
|
"tokenizer_eos_token": [ |
|
"<|endoftext|>", |
|
"0" |
|
], |
|
"tokenizer_bos_token": [ |
|
"<|endoftext|>", |
|
"0" |
|
], |
|
"eot_token_id": 0, |
|
"max_length": 8192, |
|
"task_hashes": {}, |
|
"model_source": "vllm", |
|
"model_name": "inceptionai/jais-family-30b-8k-chat", |
|
"model_name_sanitized": "inceptionai__jais-family-30b-8k-chat", |
|
"system_instruction": null, |
|
"system_instruction_sha": null, |
|
"fewshot_as_multiturn": false, |
|
"chat_template": null, |
|
"chat_template_sha": null, |
|
"start_time": 4656.092269832, |
|
"end_time": 14129.443287503, |
|
"total_evaluation_time_seconds": "9473.351017671" |
|
} |