{ "results": { "openaimmlu": { "acc,none": 0.4615439396097422, "acc_stderr,none": 0.004090287961453241, "alias": "openaimmlu" }, "openaimmlu_STEM": { "acc,none": 0.4198675496688742, "acc_stderr,none": 0.008819083118680756, "alias": " - STEM" }, "openaimmlu_abstract_algebra": { "alias": " - abstract_algebra", "acc,none": 0.24, "acc_stderr,none": 0.042923469599092816 }, "openaimmlu_astronomy": { "alias": " - astronomy", "acc,none": 0.5197368421052632, "acc_stderr,none": 0.04065771002562603 }, "openaimmlu_college_biology": { "alias": " - college_biology", "acc,none": 0.4652777777777778, "acc_stderr,none": 0.041711158581816184 }, "openaimmlu_college_chemistry": { "alias": " - college_chemistry", "acc,none": 0.37, "acc_stderr,none": 0.04852365870939099 }, "openaimmlu_college_computer_science": { "alias": " - college_computer_science", "acc,none": 0.36, "acc_stderr,none": 0.048241815132442176 }, "openaimmlu_college_mathematics": { "alias": " - college_mathematics", "acc,none": 0.27, "acc_stderr,none": 0.044619604333847394 }, "openaimmlu_college_physics": { "alias": " - college_physics", "acc,none": 0.28431372549019607, "acc_stderr,none": 0.04488482852329017 }, "openaimmlu_computer_security": { "alias": " - computer_security", "acc,none": 0.52, "acc_stderr,none": 0.050211673156867795 }, "openaimmlu_conceptual_physics": { "alias": " - conceptual_physics", "acc,none": 0.4297872340425532, "acc_stderr,none": 0.03236214467715564 }, "openaimmlu_econometrics": { "alias": " - econometrics", "acc,none": 0.3333333333333333, "acc_stderr,none": 0.044346007015849245 }, "openaimmlu_electrical_engineering": { "alias": " - electrical_engineering", "acc,none": 0.5241379310344828, "acc_stderr,none": 0.0416180850350153 }, "openaimmlu_elementary_mathematics": { "alias": " - elementary_mathematics", "acc,none": 0.3835978835978836, "acc_stderr,none": 0.025043757318520196 }, "openaimmlu_high_school_biology": { "alias": " - high_school_biology", "acc,none": 0.5935483870967742, "acc_stderr,none": 0.027941727346256308 }, "openaimmlu_high_school_chemistry": { "alias": " - high_school_chemistry", "acc,none": 0.43349753694581283, "acc_stderr,none": 0.03486731727419872 }, "openaimmlu_high_school_computer_science": { "alias": " - high_school_computer_science", "acc,none": 0.57, "acc_stderr,none": 0.04975698519562428 }, "openaimmlu_high_school_mathematics": { "alias": " - high_school_mathematics", "acc,none": 0.2962962962962963, "acc_stderr,none": 0.02784081149587193 }, "openaimmlu_high_school_physics": { "alias": " - high_school_physics", "acc,none": 0.3443708609271523, "acc_stderr,none": 0.038796870240733264 }, "openaimmlu_high_school_statistics": { "alias": " - high_school_statistics", "acc,none": 0.4444444444444444, "acc_stderr,none": 0.03388857118502325 }, "openaimmlu_humanities": { "acc,none": 0.5720620842572062, "acc_stderr,none": 0.011582619725483814, "alias": " - Humanities" }, "openaimmlu_high_school_european_history": { "alias": " - high_school_european_history", "acc,none": 0.6606060606060606, "acc_stderr,none": 0.03697442205031595 }, "openaimmlu_high_school_us_history": { "alias": " - high_school_us_history", "acc,none": 0.6176470588235294, "acc_stderr,none": 0.03410785338904719 }, "openaimmlu_high_school_world_history": { "alias": " - high_school_world_history", "acc,none": 0.6624472573839663, "acc_stderr,none": 0.03078154910202622 }, "openaimmlu_international_law": { "alias": " - international_law", "acc,none": 0.628099173553719, "acc_stderr,none": 0.04412015806624505 }, "openaimmlu_jurisprudence": { "alias": " - jurisprudence", "acc,none": 0.5648148148148148, "acc_stderr,none": 0.04792898170907062 }, "openaimmlu_logical_fallacies": { "alias": " - logical_fallacies", "acc,none": 0.4723926380368098, "acc_stderr,none": 0.03922378290610991 }, "openaimmlu_philosophy": { "alias": " - philosophy", "acc,none": 0.5241157556270096, "acc_stderr,none": 0.028365041542564577 }, "openaimmlu_prehistory": { "alias": " - prehistory", "acc,none": 0.5277777777777778, "acc_stderr,none": 0.027777777777777797 }, "openaimmlu_world_religions": { "alias": " - world_religions", "acc,none": 0.5380116959064327, "acc_stderr,none": 0.03823727092882307 }, "openaimmlu_other": { "acc,none": 0.44622387053270396, "acc_stderr,none": 0.0063302986349148774, "alias": " - Other" }, "openaimmlu_anatomy": { "alias": " - anatomy", "acc,none": 0.4444444444444444, "acc_stderr,none": 0.04292596718256981 }, "openaimmlu_clinical_knowledge": { "alias": " - clinical_knowledge", "acc,none": 0.5094339622641509, "acc_stderr,none": 0.0307673947078081 }, "openaimmlu_college_medicine": { "alias": " - college_medicine", "acc,none": 0.41040462427745666, "acc_stderr,none": 0.03750757044895537 }, "openaimmlu_formal_logic": { "alias": " - formal_logic", "acc,none": 0.2619047619047619, "acc_stderr,none": 0.03932537680392871 }, "openaimmlu_global_facts": { "alias": " - global_facts", "acc,none": 0.36, "acc_stderr,none": 0.048241815132442176 }, "openaimmlu_high_school_geography": { "alias": " - high_school_geography", "acc,none": 0.5858585858585859, "acc_stderr,none": 0.035094383488796295 }, "openaimmlu_high_school_psychology": { "alias": " - high_school_psychology", "acc,none": 0.5614678899082569, "acc_stderr,none": 0.021274713073954565 }, "openaimmlu_human_aging": { "alias": " - human_aging", "acc,none": 0.47085201793721976, "acc_stderr,none": 0.03350073248773404 }, "openaimmlu_machine_learning": { "alias": " - machine_learning", "acc,none": 0.24107142857142858, "acc_stderr,none": 0.04059867246952685 }, "openaimmlu_medical_genetics": { "alias": " - medical_genetics", "acc,none": 0.48, "acc_stderr,none": 0.050211673156867795 }, "openaimmlu_miscellaneous": { "alias": " - miscellaneous", "acc,none": 0.5925925925925926, "acc_stderr,none": 0.017570705239256555 }, "openaimmlu_nutrition": { "alias": " - nutrition", "acc,none": 0.5294117647058824, "acc_stderr,none": 0.02858034106513829 }, "openaimmlu_professional_accounting": { "alias": " - professional_accounting", "acc,none": 0.30851063829787234, "acc_stderr,none": 0.027553366165101362 }, "openaimmlu_professional_law": { "alias": " - professional_law", "acc,none": 0.3546284224250326, "acc_stderr,none": 0.012218576439090169 }, "openaimmlu_professional_medicine": { "alias": " - professional_medicine", "acc,none": 0.44485294117647056, "acc_stderr,none": 0.03018753206032938 }, "openaimmlu_professional_psychology": { "alias": " - professional_psychology", "acc,none": 0.42483660130718953, "acc_stderr,none": 0.01999797303545833 }, "openaimmlu_virology": { "alias": " - virology", "acc,none": 0.43373493975903615, "acc_stderr,none": 0.03858158940685517 }, "openaimmlu_social_science": { "acc,none": 0.46682897139379187, "acc_stderr,none": 0.008294155824875415, "alias": " - Social Science" }, "openaimmlu_business_ethics": { "alias": " - business_ethics", "acc,none": 0.49, "acc_stderr,none": 0.05024183937956912 }, "openaimmlu_high_school_government_and_politics": { "alias": " - high_school_government_and_politics", "acc,none": 0.6373056994818653, "acc_stderr,none": 0.03469713791704371 }, "openaimmlu_high_school_macroeconomics": { "alias": " - high_school_macroeconomics", "acc,none": 0.4512820512820513, "acc_stderr,none": 0.02523038123893484 }, "openaimmlu_high_school_microeconomics": { "alias": " - high_school_microeconomics", "acc,none": 0.44537815126050423, "acc_stderr,none": 0.0322841062671639 }, "openaimmlu_human_sexuality": { "alias": " - human_sexuality", "acc,none": 0.5114503816793893, "acc_stderr,none": 0.043841400240780176 }, "openaimmlu_management": { "alias": " - management", "acc,none": 0.5436893203883495, "acc_stderr,none": 0.049318019942204146 }, "openaimmlu_marketing": { "alias": " - marketing", "acc,none": 0.6410256410256411, "acc_stderr,none": 0.03142616993791924 }, "openaimmlu_moral_disputes": { "alias": " - moral_disputes", "acc,none": 0.4884393063583815, "acc_stderr,none": 0.026911898686377913 }, "openaimmlu_moral_scenarios": { "alias": " - moral_scenarios", "acc,none": 0.24692737430167597, "acc_stderr,none": 0.01442229220480885 }, "openaimmlu_public_relations": { "alias": " - public_relations", "acc,none": 0.5727272727272728, "acc_stderr,none": 0.04738198703545483 }, "openaimmlu_security_studies": { "alias": " - security_studies", "acc,none": 0.5918367346938775, "acc_stderr,none": 0.03146465712827424 }, "openaimmlu_sociology": { "alias": " - sociology", "acc,none": 0.7064676616915423, "acc_stderr,none": 0.03220024104534205 }, "openaimmlu_us_foreign_policy": { "alias": " - us_foreign_policy", "acc,none": 0.67, "acc_stderr,none": 0.047258156262526066 } }, "groups": { "openaimmlu": { "acc,none": 0.4615439396097422, "acc_stderr,none": 0.004090287961453241, "alias": "openaimmlu" }, "openaimmlu_STEM": { "acc,none": 0.4198675496688742, "acc_stderr,none": 0.008819083118680756, "alias": " - STEM" }, "openaimmlu_humanities": { "acc,none": 0.5720620842572062, "acc_stderr,none": 0.011582619725483814, "alias": " - Humanities" }, "openaimmlu_other": { "acc,none": 0.44622387053270396, "acc_stderr,none": 0.0063302986349148774, "alias": " - Other" }, "openaimmlu_social_science": { "acc,none": 0.46682897139379187, "acc_stderr,none": 0.008294155824875415, "alias": " - Social Science" } }, "group_subtasks": { "openaimmlu_humanities": [ "openaimmlu_logical_fallacies", "openaimmlu_high_school_us_history", "openaimmlu_prehistory", "openaimmlu_high_school_world_history", "openaimmlu_philosophy", "openaimmlu_international_law", "openaimmlu_jurisprudence", "openaimmlu_world_religions", "openaimmlu_high_school_european_history" ], "openaimmlu_social_science": [ "openaimmlu_marketing", "openaimmlu_moral_scenarios", "openaimmlu_high_school_macroeconomics", "openaimmlu_high_school_government_and_politics", "openaimmlu_business_ethics", "openaimmlu_high_school_microeconomics", "openaimmlu_security_studies", "openaimmlu_moral_disputes", "openaimmlu_public_relations", "openaimmlu_us_foreign_policy", "openaimmlu_management", "openaimmlu_sociology", "openaimmlu_human_sexuality" ], "openaimmlu_other": [ "openaimmlu_professional_law", "openaimmlu_medical_genetics", "openaimmlu_nutrition", "openaimmlu_miscellaneous", "openaimmlu_formal_logic", "openaimmlu_high_school_geography", "openaimmlu_professional_medicine", "openaimmlu_clinical_knowledge", "openaimmlu_professional_accounting", "openaimmlu_professional_psychology", "openaimmlu_college_medicine", "openaimmlu_human_aging", "openaimmlu_high_school_psychology", "openaimmlu_anatomy", "openaimmlu_global_facts", "openaimmlu_machine_learning", "openaimmlu_virology" ], "openaimmlu_STEM": [ "openaimmlu_high_school_physics", "openaimmlu_college_biology", "openaimmlu_computer_security", "openaimmlu_electrical_engineering", "openaimmlu_college_computer_science", "openaimmlu_abstract_algebra", "openaimmlu_high_school_chemistry", "openaimmlu_high_school_biology", "openaimmlu_high_school_mathematics", "openaimmlu_high_school_statistics", "openaimmlu_elementary_mathematics", "openaimmlu_college_mathematics", "openaimmlu_college_physics", "openaimmlu_astronomy", "openaimmlu_college_chemistry", "openaimmlu_econometrics", "openaimmlu_high_school_computer_science", "openaimmlu_conceptual_physics" ], "openaimmlu": [ "openaimmlu_STEM", "openaimmlu_other", "openaimmlu_social_science", "openaimmlu_humanities" ] }, "configs": { "openaimmlu_abstract_algebra": { "task": "openaimmlu_abstract_algebra", "task_alias": "abstract_algebra", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "abstract_algebra", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_anatomy": { "task": "openaimmlu_anatomy", "task_alias": "anatomy", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "anatomy", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_astronomy": { "task": "openaimmlu_astronomy", "task_alias": "astronomy", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "astronomy", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_business_ethics": { "task": "openaimmlu_business_ethics", "task_alias": "business_ethics", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "business_ethics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_clinical_knowledge": { "task": "openaimmlu_clinical_knowledge", "task_alias": "clinical_knowledge", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "clinical_knowledge", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_college_biology": { "task": "openaimmlu_college_biology", "task_alias": "college_biology", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "college_biology", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_college_chemistry": { "task": "openaimmlu_college_chemistry", "task_alias": "college_chemistry", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "college_chemistry", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_college_computer_science": { "task": "openaimmlu_college_computer_science", "task_alias": "college_computer_science", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "college_computer_science", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_college_mathematics": { "task": "openaimmlu_college_mathematics", "task_alias": "college_mathematics", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "college_mathematics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_college_medicine": { "task": "openaimmlu_college_medicine", "task_alias": "college_medicine", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "college_medicine", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_college_physics": { "task": "openaimmlu_college_physics", "task_alias": "college_physics", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "college_physics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_computer_security": { "task": "openaimmlu_computer_security", "task_alias": "computer_security", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "computer_security", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_conceptual_physics": { "task": "openaimmlu_conceptual_physics", "task_alias": "conceptual_physics", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "conceptual_physics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_econometrics": { "task": "openaimmlu_econometrics", "task_alias": "econometrics", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "econometrics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_electrical_engineering": { "task": "openaimmlu_electrical_engineering", "task_alias": "electrical_engineering", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "electrical_engineering", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_elementary_mathematics": { "task": "openaimmlu_elementary_mathematics", "task_alias": "elementary_mathematics", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "elementary_mathematics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_formal_logic": { "task": "openaimmlu_formal_logic", "task_alias": "formal_logic", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "formal_logic", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_global_facts": { "task": "openaimmlu_global_facts", "task_alias": "global_facts", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "global_facts", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_biology": { "task": "openaimmlu_high_school_biology", "task_alias": "high_school_biology", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_biology", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_chemistry": { "task": "openaimmlu_high_school_chemistry", "task_alias": "high_school_chemistry", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_chemistry", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_computer_science": { "task": "openaimmlu_high_school_computer_science", "task_alias": "high_school_computer_science", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_computer_science", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_european_history": { "task": "openaimmlu_high_school_european_history", "task_alias": "high_school_european_history", "tag": "openaimmlu_humanities_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_european_history", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_geography": { "task": "openaimmlu_high_school_geography", "task_alias": "high_school_geography", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_geography", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_government_and_politics": { "task": "openaimmlu_high_school_government_and_politics", "task_alias": "high_school_government_and_politics", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_government_and_politics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_macroeconomics": { "task": "openaimmlu_high_school_macroeconomics", "task_alias": "high_school_macroeconomics", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_macroeconomics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_mathematics": { "task": "openaimmlu_high_school_mathematics", "task_alias": "high_school_mathematics", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_mathematics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_microeconomics": { "task": "openaimmlu_high_school_microeconomics", "task_alias": "high_school_microeconomics", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_microeconomics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_physics": { "task": "openaimmlu_high_school_physics", "task_alias": "high_school_physics", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_physics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_psychology": { "task": "openaimmlu_high_school_psychology", "task_alias": "high_school_psychology", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_psychology", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_statistics": { "task": "openaimmlu_high_school_statistics", "task_alias": "high_school_statistics", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_statistics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_us_history": { "task": "openaimmlu_high_school_us_history", "task_alias": "high_school_us_history", "tag": "openaimmlu_humanities_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_us_history", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_world_history": { "task": "openaimmlu_high_school_world_history", "task_alias": "high_school_world_history", "tag": "openaimmlu_humanities_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_world_history", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_human_aging": { "task": "openaimmlu_human_aging", "task_alias": "human_aging", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "human_aging", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_human_sexuality": { "task": "openaimmlu_human_sexuality", "task_alias": "human_sexuality", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "human_sexuality", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_international_law": { "task": "openaimmlu_international_law", "task_alias": "international_law", "tag": "openaimmlu_humanities_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "international_law", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_jurisprudence": { "task": "openaimmlu_jurisprudence", "task_alias": "jurisprudence", "tag": "openaimmlu_humanities_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "jurisprudence", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_logical_fallacies": { "task": "openaimmlu_logical_fallacies", "task_alias": "logical_fallacies", "tag": "openaimmlu_humanities_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "logical_fallacies", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_machine_learning": { "task": "openaimmlu_machine_learning", "task_alias": "machine_learning", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "machine_learning", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_management": { "task": "openaimmlu_management", "task_alias": "management", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "management", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_marketing": { "task": "openaimmlu_marketing", "task_alias": "marketing", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "marketing", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_medical_genetics": { "task": "openaimmlu_medical_genetics", "task_alias": "medical_genetics", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "medical_genetics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_miscellaneous": { "task": "openaimmlu_miscellaneous", "task_alias": "miscellaneous", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "miscellaneous", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_moral_disputes": { "task": "openaimmlu_moral_disputes", "task_alias": "moral_disputes", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "moral_disputes", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_moral_scenarios": { "task": "openaimmlu_moral_scenarios", "task_alias": "moral_scenarios", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "moral_scenarios", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_nutrition": { "task": "openaimmlu_nutrition", "task_alias": "nutrition", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "nutrition", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_philosophy": { "task": "openaimmlu_philosophy", "task_alias": "philosophy", "tag": "openaimmlu_humanities_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "philosophy", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_prehistory": { "task": "openaimmlu_prehistory", "task_alias": "prehistory", "tag": "openaimmlu_humanities_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "prehistory", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_professional_accounting": { "task": "openaimmlu_professional_accounting", "task_alias": "professional_accounting", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "professional_accounting", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_professional_law": { "task": "openaimmlu_professional_law", "task_alias": "professional_law", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "professional_law", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_professional_medicine": { "task": "openaimmlu_professional_medicine", "task_alias": "professional_medicine", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "professional_medicine", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_professional_psychology": { "task": "openaimmlu_professional_psychology", "task_alias": "professional_psychology", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "professional_psychology", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_public_relations": { "task": "openaimmlu_public_relations", "task_alias": "public_relations", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "public_relations", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_security_studies": { "task": "openaimmlu_security_studies", "task_alias": "security_studies", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "security_studies", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_sociology": { "task": "openaimmlu_sociology", "task_alias": "sociology", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "sociology", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_us_foreign_policy": { "task": "openaimmlu_us_foreign_policy", "task_alias": "us_foreign_policy", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "us_foreign_policy", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_virology": { "task": "openaimmlu_virology", "task_alias": "virology", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "virology", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_world_religions": { "task": "openaimmlu_world_religions", "task_alias": "world_religions", "tag": "openaimmlu_humanities_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "world_religions", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } } }, "versions": { "openaimmlu": 0, "openaimmlu_STEM": 0, "openaimmlu_abstract_algebra": 0.0, "openaimmlu_anatomy": 0.0, "openaimmlu_astronomy": 0.0, "openaimmlu_business_ethics": 0.0, "openaimmlu_clinical_knowledge": 0.0, "openaimmlu_college_biology": 0.0, "openaimmlu_college_chemistry": 0.0, "openaimmlu_college_computer_science": 0.0, "openaimmlu_college_mathematics": 0.0, "openaimmlu_college_medicine": 0.0, "openaimmlu_college_physics": 0.0, "openaimmlu_computer_security": 0.0, "openaimmlu_conceptual_physics": 0.0, "openaimmlu_econometrics": 0.0, "openaimmlu_electrical_engineering": 0.0, "openaimmlu_elementary_mathematics": 0.0, "openaimmlu_formal_logic": 0.0, "openaimmlu_global_facts": 0.0, "openaimmlu_high_school_biology": 0.0, "openaimmlu_high_school_chemistry": 0.0, "openaimmlu_high_school_computer_science": 0.0, "openaimmlu_high_school_european_history": 0.0, "openaimmlu_high_school_geography": 0.0, "openaimmlu_high_school_government_and_politics": 0.0, "openaimmlu_high_school_macroeconomics": 0.0, "openaimmlu_high_school_mathematics": 0.0, "openaimmlu_high_school_microeconomics": 0.0, "openaimmlu_high_school_physics": 0.0, "openaimmlu_high_school_psychology": 0.0, "openaimmlu_high_school_statistics": 0.0, "openaimmlu_high_school_us_history": 0.0, "openaimmlu_high_school_world_history": 0.0, "openaimmlu_human_aging": 0.0, "openaimmlu_human_sexuality": 0.0, "openaimmlu_humanities": 0, "openaimmlu_international_law": 0.0, "openaimmlu_jurisprudence": 0.0, "openaimmlu_logical_fallacies": 0.0, "openaimmlu_machine_learning": 0.0, "openaimmlu_management": 0.0, "openaimmlu_marketing": 0.0, "openaimmlu_medical_genetics": 0.0, "openaimmlu_miscellaneous": 0.0, "openaimmlu_moral_disputes": 0.0, "openaimmlu_moral_scenarios": 0.0, "openaimmlu_nutrition": 0.0, "openaimmlu_other": 0, "openaimmlu_philosophy": 0.0, "openaimmlu_prehistory": 0.0, "openaimmlu_professional_accounting": 0.0, "openaimmlu_professional_law": 0.0, "openaimmlu_professional_medicine": 0.0, "openaimmlu_professional_psychology": 0.0, "openaimmlu_public_relations": 0.0, "openaimmlu_security_studies": 0.0, "openaimmlu_social_science": 0, "openaimmlu_sociology": 0.0, "openaimmlu_us_foreign_policy": 0.0, "openaimmlu_virology": 0.0, "openaimmlu_world_religions": 0.0 }, "n-shot": { "openaimmlu_abstract_algebra": 0, "openaimmlu_anatomy": 0, "openaimmlu_astronomy": 0, "openaimmlu_business_ethics": 0, "openaimmlu_clinical_knowledge": 0, "openaimmlu_college_biology": 0, "openaimmlu_college_chemistry": 0, "openaimmlu_college_computer_science": 0, "openaimmlu_college_mathematics": 0, "openaimmlu_college_medicine": 0, "openaimmlu_college_physics": 0, "openaimmlu_computer_security": 0, "openaimmlu_conceptual_physics": 0, "openaimmlu_econometrics": 0, "openaimmlu_electrical_engineering": 0, "openaimmlu_elementary_mathematics": 0, "openaimmlu_formal_logic": 0, "openaimmlu_global_facts": 0, "openaimmlu_high_school_biology": 0, "openaimmlu_high_school_chemistry": 0, "openaimmlu_high_school_computer_science": 0, "openaimmlu_high_school_european_history": 0, "openaimmlu_high_school_geography": 0, "openaimmlu_high_school_government_and_politics": 0, "openaimmlu_high_school_macroeconomics": 0, "openaimmlu_high_school_mathematics": 0, "openaimmlu_high_school_microeconomics": 0, "openaimmlu_high_school_physics": 0, "openaimmlu_high_school_psychology": 0, "openaimmlu_high_school_statistics": 0, "openaimmlu_high_school_us_history": 0, "openaimmlu_high_school_world_history": 0, "openaimmlu_human_aging": 0, "openaimmlu_human_sexuality": 0, "openaimmlu_international_law": 0, "openaimmlu_jurisprudence": 0, "openaimmlu_logical_fallacies": 0, "openaimmlu_machine_learning": 0, "openaimmlu_management": 0, "openaimmlu_marketing": 0, "openaimmlu_medical_genetics": 0, "openaimmlu_miscellaneous": 0, "openaimmlu_moral_disputes": 0, "openaimmlu_moral_scenarios": 0, "openaimmlu_nutrition": 0, "openaimmlu_philosophy": 0, "openaimmlu_prehistory": 0, "openaimmlu_professional_accounting": 0, "openaimmlu_professional_law": 0, "openaimmlu_professional_medicine": 0, "openaimmlu_professional_psychology": 0, "openaimmlu_public_relations": 0, "openaimmlu_security_studies": 0, "openaimmlu_sociology": 0, "openaimmlu_us_foreign_policy": 0, "openaimmlu_virology": 0, "openaimmlu_world_religions": 0 }, "higher_is_better": { "openaimmlu": { "acc": true }, "openaimmlu_STEM": { "acc": true }, "openaimmlu_abstract_algebra": { "acc": true }, "openaimmlu_anatomy": { "acc": true }, "openaimmlu_astronomy": { "acc": true }, "openaimmlu_business_ethics": { "acc": true }, "openaimmlu_clinical_knowledge": { "acc": true }, "openaimmlu_college_biology": { "acc": true }, "openaimmlu_college_chemistry": { "acc": true }, "openaimmlu_college_computer_science": { "acc": true }, "openaimmlu_college_mathematics": { "acc": true }, "openaimmlu_college_medicine": { "acc": true }, "openaimmlu_college_physics": { "acc": true }, "openaimmlu_computer_security": { "acc": true }, "openaimmlu_conceptual_physics": { "acc": true }, "openaimmlu_econometrics": { "acc": true }, "openaimmlu_electrical_engineering": { "acc": true }, "openaimmlu_elementary_mathematics": { "acc": true }, "openaimmlu_formal_logic": { "acc": true }, "openaimmlu_global_facts": { "acc": true }, "openaimmlu_high_school_biology": { "acc": true }, "openaimmlu_high_school_chemistry": { "acc": true }, "openaimmlu_high_school_computer_science": { "acc": true }, "openaimmlu_high_school_european_history": { "acc": true }, "openaimmlu_high_school_geography": { "acc": true }, "openaimmlu_high_school_government_and_politics": { "acc": true }, "openaimmlu_high_school_macroeconomics": { "acc": true }, "openaimmlu_high_school_mathematics": { "acc": true }, "openaimmlu_high_school_microeconomics": { "acc": true }, "openaimmlu_high_school_physics": { "acc": true }, "openaimmlu_high_school_psychology": { "acc": true }, "openaimmlu_high_school_statistics": { "acc": true }, "openaimmlu_high_school_us_history": { "acc": true }, "openaimmlu_high_school_world_history": { "acc": true }, "openaimmlu_human_aging": { "acc": true }, "openaimmlu_human_sexuality": { "acc": true }, "openaimmlu_humanities": { "acc": true }, "openaimmlu_international_law": { "acc": true }, "openaimmlu_jurisprudence": { "acc": true }, "openaimmlu_logical_fallacies": { "acc": true }, "openaimmlu_machine_learning": { "acc": true }, "openaimmlu_management": { "acc": true }, "openaimmlu_marketing": { "acc": true }, "openaimmlu_medical_genetics": { "acc": true }, "openaimmlu_miscellaneous": { "acc": true }, "openaimmlu_moral_disputes": { "acc": true }, "openaimmlu_moral_scenarios": { "acc": true }, "openaimmlu_nutrition": { "acc": true }, "openaimmlu_other": { "acc": true }, "openaimmlu_philosophy": { "acc": true }, "openaimmlu_prehistory": { "acc": true }, "openaimmlu_professional_accounting": { "acc": true }, "openaimmlu_professional_law": { "acc": true }, "openaimmlu_professional_medicine": { "acc": true }, "openaimmlu_professional_psychology": { "acc": true }, "openaimmlu_public_relations": { "acc": true }, "openaimmlu_security_studies": { "acc": true }, "openaimmlu_social_science": { "acc": true }, "openaimmlu_sociology": { "acc": true }, "openaimmlu_us_foreign_policy": { "acc": true }, "openaimmlu_virology": { "acc": true }, "openaimmlu_world_religions": { "acc": true } }, "n-samples": { "openaimmlu_high_school_physics": { "original": 151, "effective": 151 }, "openaimmlu_college_biology": { "original": 144, "effective": 144 }, "openaimmlu_computer_security": { "original": 100, "effective": 100 }, "openaimmlu_electrical_engineering": { "original": 145, "effective": 145 }, "openaimmlu_college_computer_science": { "original": 100, "effective": 100 }, "openaimmlu_abstract_algebra": { "original": 100, "effective": 100 }, "openaimmlu_high_school_chemistry": { "original": 203, "effective": 203 }, "openaimmlu_high_school_biology": { "original": 310, "effective": 310 }, "openaimmlu_high_school_mathematics": { "original": 270, "effective": 270 }, "openaimmlu_high_school_statistics": { "original": 216, "effective": 216 }, "openaimmlu_elementary_mathematics": { "original": 378, "effective": 378 }, "openaimmlu_college_mathematics": { "original": 100, "effective": 100 }, "openaimmlu_college_physics": { "original": 102, "effective": 102 }, "openaimmlu_astronomy": { "original": 152, "effective": 152 }, "openaimmlu_college_chemistry": { "original": 100, "effective": 100 }, "openaimmlu_econometrics": { "original": 114, "effective": 114 }, "openaimmlu_high_school_computer_science": { "original": 100, "effective": 100 }, "openaimmlu_conceptual_physics": { "original": 235, "effective": 235 }, "openaimmlu_professional_law": { "original": 1534, "effective": 1534 }, "openaimmlu_medical_genetics": { "original": 100, "effective": 100 }, "openaimmlu_nutrition": { "original": 306, "effective": 306 }, "openaimmlu_miscellaneous": { "original": 783, "effective": 783 }, "openaimmlu_formal_logic": { "original": 126, "effective": 126 }, "openaimmlu_high_school_geography": { "original": 198, "effective": 198 }, "openaimmlu_professional_medicine": { "original": 272, "effective": 272 }, "openaimmlu_clinical_knowledge": { "original": 265, "effective": 265 }, "openaimmlu_professional_accounting": { "original": 282, "effective": 282 }, "openaimmlu_professional_psychology": { "original": 612, "effective": 612 }, "openaimmlu_college_medicine": { "original": 173, "effective": 173 }, "openaimmlu_human_aging": { "original": 223, "effective": 223 }, "openaimmlu_high_school_psychology": { "original": 545, "effective": 545 }, "openaimmlu_anatomy": { "original": 135, "effective": 135 }, "openaimmlu_global_facts": { "original": 100, "effective": 100 }, "openaimmlu_machine_learning": { "original": 112, "effective": 112 }, "openaimmlu_virology": { "original": 166, "effective": 166 }, "openaimmlu_marketing": { "original": 234, "effective": 234 }, "openaimmlu_moral_scenarios": { "original": 895, "effective": 895 }, "openaimmlu_high_school_macroeconomics": { "original": 390, "effective": 390 }, "openaimmlu_high_school_government_and_politics": { "original": 193, "effective": 193 }, "openaimmlu_business_ethics": { "original": 100, "effective": 100 }, "openaimmlu_high_school_microeconomics": { "original": 238, "effective": 238 }, "openaimmlu_security_studies": { "original": 245, "effective": 245 }, "openaimmlu_moral_disputes": { "original": 346, "effective": 346 }, "openaimmlu_public_relations": { "original": 110, "effective": 110 }, "openaimmlu_us_foreign_policy": { "original": 100, "effective": 100 }, "openaimmlu_management": { "original": 103, "effective": 103 }, "openaimmlu_sociology": { "original": 201, "effective": 201 }, "openaimmlu_human_sexuality": { "original": 131, "effective": 131 }, "openaimmlu_logical_fallacies": { "original": 163, "effective": 163 }, "openaimmlu_high_school_us_history": { "original": 204, "effective": 204 }, "openaimmlu_prehistory": { "original": 324, "effective": 324 }, "openaimmlu_high_school_world_history": { "original": 237, "effective": 237 }, "openaimmlu_philosophy": { "original": 311, "effective": 311 }, "openaimmlu_international_law": { "original": 121, "effective": 121 }, "openaimmlu_jurisprudence": { "original": 108, "effective": 108 }, "openaimmlu_world_religions": { "original": 171, "effective": 171 }, "openaimmlu_high_school_european_history": { "original": 165, "effective": 165 } }, "config": { "model": "hf", "model_args": "pretrained=mistralai/Mistral-Nemo-Instruct-2407,trust_remote_code=True,cache_dir=/tmp,parallelize=False", "model_num_parameters": 12247782400, "model_dtype": "torch.bfloat16", "model_revision": "main", "model_sha": "8aedd450f2583e9c67fae1929f6936b8fc5aef9c", "batch_size": "auto", "batch_sizes": [ 32 ], "device": null, "use_cache": null, "limit": null, "bootstrap_iters": 100000, "gen_kwargs": null, "random_seed": 0, "numpy_seed": 1234, "torch_seed": 1234, "fewshot_seed": 1234 }, "git_hash": "5e10e017", "date": 1736969874.3072467, "pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.89\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect", "transformers_version": "4.48.0", "upper_git_hash": "2e5cd5395faf76fea1afc96dd0f7161a9d3aa145", "tokenizer_pad_token": [ "<unk>", "0" ], "tokenizer_eos_token": [ "</s>", "2" ], "tokenizer_bos_token": [ "<s>", "1" ], "eot_token_id": 2, "max_length": 131072, "task_hashes": {}, "model_source": "hf", "model_name": "mistralai/Mistral-Nemo-Instruct-2407", "model_name_sanitized": "mistralai__Mistral-Nemo-Instruct-2407", "system_instruction": null, "system_instruction_sha": null, "fewshot_as_multiturn": false, "chat_template": null, "chat_template_sha": null, "start_time": 5063.260085979, "end_time": 5346.967923807, "total_evaluation_time_seconds": "283.70783782800027" }