{ "results": { "openaimmlu": { "acc,none": 0.47728243839908846, "acc_stderr,none": 0.004075228135853262, "alias": "openaimmlu" }, "openaimmlu_STEM": { "acc,none": 0.40066225165562913, "acc_stderr,none": 0.008735985110676752, "alias": " - STEM" }, "openaimmlu_abstract_algebra": { "alias": " - abstract_algebra", "acc,none": 0.25, "acc_stderr,none": 0.04351941398892446 }, "openaimmlu_astronomy": { "alias": " - astronomy", "acc,none": 0.5197368421052632, "acc_stderr,none": 0.040657710025626036 }, "openaimmlu_college_biology": { "alias": " - college_biology", "acc,none": 0.5277777777777778, "acc_stderr,none": 0.04174752578923185 }, "openaimmlu_college_chemistry": { "alias": " - college_chemistry", "acc,none": 0.34, "acc_stderr,none": 0.04760952285695236 }, "openaimmlu_college_computer_science": { "alias": " - college_computer_science", "acc,none": 0.46, "acc_stderr,none": 0.05009082659620333 }, "openaimmlu_college_mathematics": { "alias": " - college_mathematics", "acc,none": 0.29, "acc_stderr,none": 0.04560480215720684 }, "openaimmlu_college_physics": { "alias": " - college_physics", "acc,none": 0.3333333333333333, "acc_stderr,none": 0.04690650298201943 }, "openaimmlu_computer_security": { "alias": " - computer_security", "acc,none": 0.57, "acc_stderr,none": 0.04975698519562428 }, "openaimmlu_conceptual_physics": { "alias": " - conceptual_physics", "acc,none": 0.3872340425531915, "acc_stderr,none": 0.03184389265339526 }, "openaimmlu_econometrics": { "alias": " - econometrics", "acc,none": 0.3333333333333333, "acc_stderr,none": 0.044346007015849245 }, "openaimmlu_electrical_engineering": { "alias": " - electrical_engineering", "acc,none": 0.4689655172413793, "acc_stderr,none": 0.04158632762097828 }, "openaimmlu_elementary_mathematics": { "alias": " - elementary_mathematics", "acc,none": 0.3412698412698413, "acc_stderr,none": 0.02441923496681907 }, "openaimmlu_high_school_biology": { "alias": " - high_school_biology", "acc,none": 0.5838709677419355, "acc_stderr,none": 0.028040981380761543 }, "openaimmlu_high_school_chemistry": { "alias": " - high_school_chemistry", "acc,none": 0.4236453201970443, "acc_stderr,none": 0.034767257476490364 }, "openaimmlu_high_school_computer_science": { "alias": " - high_school_computer_science", "acc,none": 0.49, "acc_stderr,none": 0.05024183937956912 }, "openaimmlu_high_school_mathematics": { "alias": " - high_school_mathematics", "acc,none": 0.29259259259259257, "acc_stderr,none": 0.02773896963217609 }, "openaimmlu_high_school_physics": { "alias": " - high_school_physics", "acc,none": 0.33112582781456956, "acc_stderr,none": 0.038425817186598696 }, "openaimmlu_high_school_statistics": { "alias": " - high_school_statistics", "acc,none": 0.27314814814814814, "acc_stderr,none": 0.030388051301678116 }, "openaimmlu_humanities": { "acc,none": 0.6003325942350333, "acc_stderr,none": 0.011449323544037743, "alias": " - Humanities" }, "openaimmlu_high_school_european_history": { "alias": " - high_school_european_history", "acc,none": 0.6909090909090909, "acc_stderr,none": 0.036085410115739666 }, "openaimmlu_high_school_us_history": { "alias": " - high_school_us_history", "acc,none": 0.6323529411764706, "acc_stderr,none": 0.03384132045674118 }, "openaimmlu_high_school_world_history": { "alias": " - high_school_world_history", "acc,none": 0.6835443037974683, "acc_stderr,none": 0.03027497488021898 }, "openaimmlu_international_law": { "alias": " - international_law", "acc,none": 0.6446280991735537, "acc_stderr,none": 0.0436923632657398 }, "openaimmlu_jurisprudence": { "alias": " - jurisprudence", "acc,none": 0.5555555555555556, "acc_stderr,none": 0.04803752235190192 }, "openaimmlu_logical_fallacies": { "alias": " - logical_fallacies", "acc,none": 0.5521472392638037, "acc_stderr,none": 0.03906947479456606 }, "openaimmlu_philosophy": { "alias": " - philosophy", "acc,none": 0.5530546623794212, "acc_stderr,none": 0.028237769422085335 }, "openaimmlu_prehistory": { "alias": " - prehistory", "acc,none": 0.5061728395061729, "acc_stderr,none": 0.027818623962583302 }, "openaimmlu_world_religions": { "alias": " - world_religions", "acc,none": 0.6666666666666666, "acc_stderr,none": 0.036155076303109344 }, "openaimmlu_other": { "acc,none": 0.48128792987188135, "acc_stderr,none": 0.006333441327132957, "alias": " - Other" }, "openaimmlu_anatomy": { "alias": " - anatomy", "acc,none": 0.4444444444444444, "acc_stderr,none": 0.04292596718256981 }, "openaimmlu_clinical_knowledge": { "alias": " - clinical_knowledge", "acc,none": 0.5509433962264151, "acc_stderr,none": 0.030612730713641095 }, "openaimmlu_college_medicine": { "alias": " - college_medicine", "acc,none": 0.49710982658959535, "acc_stderr,none": 0.038124005659748335 }, "openaimmlu_formal_logic": { "alias": " - formal_logic", "acc,none": 0.35714285714285715, "acc_stderr,none": 0.04285714285714281 }, "openaimmlu_global_facts": { "alias": " - global_facts", "acc,none": 0.32, "acc_stderr,none": 0.04688261722621504 }, "openaimmlu_high_school_geography": { "alias": " - high_school_geography", "acc,none": 0.6515151515151515, "acc_stderr,none": 0.033948539651564025 }, "openaimmlu_high_school_psychology": { "alias": " - high_school_psychology", "acc,none": 0.6220183486238532, "acc_stderr,none": 0.020789187066728106 }, "openaimmlu_human_aging": { "alias": " - human_aging", "acc,none": 0.547085201793722, "acc_stderr,none": 0.033408675019233246 }, "openaimmlu_machine_learning": { "alias": " - machine_learning", "acc,none": 0.375, "acc_stderr,none": 0.04595091388086298 }, "openaimmlu_medical_genetics": { "alias": " - medical_genetics", "acc,none": 0.6, "acc_stderr,none": 0.04923659639173309 }, "openaimmlu_miscellaneous": { "alias": " - miscellaneous", "acc,none": 0.6257982120051085, "acc_stderr,none": 0.01730480507225203 }, "openaimmlu_nutrition": { "alias": " - nutrition", "acc,none": 0.5359477124183006, "acc_stderr,none": 0.02855582751652878 }, "openaimmlu_professional_accounting": { "alias": " - professional_accounting", "acc,none": 0.37943262411347517, "acc_stderr,none": 0.028947338851614105 }, "openaimmlu_professional_law": { "alias": " - professional_law", "acc,none": 0.3500651890482399, "acc_stderr,none": 0.012182552313215175 }, "openaimmlu_professional_medicine": { "alias": " - professional_medicine", "acc,none": 0.4338235294117647, "acc_stderr,none": 0.030105636570016633 }, "openaimmlu_professional_psychology": { "alias": " - professional_psychology", "acc,none": 0.4869281045751634, "acc_stderr,none": 0.020220920829626912 }, "openaimmlu_virology": { "alias": " - virology", "acc,none": 0.4819277108433735, "acc_stderr,none": 0.03889951252827216 }, "openaimmlu_social_science": { "acc,none": 0.472915398660986, "acc_stderr,none": 0.008280814440523745, "alias": " - Social Science" }, "openaimmlu_business_ethics": { "alias": " - business_ethics", "acc,none": 0.58, "acc_stderr,none": 0.049604496374885836 }, "openaimmlu_high_school_government_and_politics": { "alias": " - high_school_government_and_politics", "acc,none": 0.694300518134715, "acc_stderr,none": 0.033248379397581594 }, "openaimmlu_high_school_macroeconomics": { "alias": " - high_school_macroeconomics", "acc,none": 0.4846153846153846, "acc_stderr,none": 0.025339003010106515 }, "openaimmlu_high_school_microeconomics": { "alias": " - high_school_microeconomics", "acc,none": 0.42436974789915966, "acc_stderr,none": 0.032104790510157764 }, "openaimmlu_human_sexuality": { "alias": " - human_sexuality", "acc,none": 0.6106870229007634, "acc_stderr,none": 0.04276486542814591 }, "openaimmlu_management": { "alias": " - management", "acc,none": 0.5825242718446602, "acc_stderr,none": 0.048828405482122375 }, "openaimmlu_marketing": { "alias": " - marketing", "acc,none": 0.6196581196581197, "acc_stderr,none": 0.03180425204384099 }, "openaimmlu_moral_disputes": { "alias": " - moral_disputes", "acc,none": 0.5433526011560693, "acc_stderr,none": 0.026817718130348916 }, "openaimmlu_moral_scenarios": { "alias": " - moral_scenarios", "acc,none": 0.24022346368715083, "acc_stderr,none": 0.014288343803925315 }, "openaimmlu_public_relations": { "alias": " - public_relations", "acc,none": 0.44545454545454544, "acc_stderr,none": 0.047605488214603246 }, "openaimmlu_security_studies": { "alias": " - security_studies", "acc,none": 0.5836734693877551, "acc_stderr,none": 0.03155782816556165 }, "openaimmlu_sociology": { "alias": " - sociology", "acc,none": 0.6218905472636815, "acc_stderr,none": 0.034288678487786564 }, "openaimmlu_us_foreign_policy": { "alias": " - us_foreign_policy", "acc,none": 0.67, "acc_stderr,none": 0.047258156262526094 } }, "groups": { "openaimmlu": { "acc,none": 0.47728243839908846, "acc_stderr,none": 0.004075228135853262, "alias": "openaimmlu" }, "openaimmlu_STEM": { "acc,none": 0.40066225165562913, "acc_stderr,none": 0.008735985110676752, "alias": " - STEM" }, "openaimmlu_humanities": { "acc,none": 0.6003325942350333, "acc_stderr,none": 0.011449323544037743, "alias": " - Humanities" }, "openaimmlu_other": { "acc,none": 0.48128792987188135, "acc_stderr,none": 0.006333441327132957, "alias": " - Other" }, "openaimmlu_social_science": { "acc,none": 0.472915398660986, "acc_stderr,none": 0.008280814440523745, "alias": " - Social Science" } }, "group_subtasks": { "openaimmlu_humanities": [ "openaimmlu_logical_fallacies", "openaimmlu_philosophy", "openaimmlu_international_law", "openaimmlu_high_school_us_history", "openaimmlu_jurisprudence", "openaimmlu_prehistory", "openaimmlu_world_religions", "openaimmlu_high_school_world_history", "openaimmlu_high_school_european_history" ], "openaimmlu_social_science": [ "openaimmlu_us_foreign_policy", "openaimmlu_high_school_microeconomics", "openaimmlu_moral_scenarios", "openaimmlu_high_school_government_and_politics", "openaimmlu_management", "openaimmlu_moral_disputes", "openaimmlu_public_relations", "openaimmlu_human_sexuality", "openaimmlu_security_studies", "openaimmlu_business_ethics", "openaimmlu_sociology", "openaimmlu_high_school_macroeconomics", "openaimmlu_marketing" ], "openaimmlu_other": [ "openaimmlu_professional_law", "openaimmlu_professional_psychology", "openaimmlu_machine_learning", "openaimmlu_human_aging", "openaimmlu_high_school_geography", "openaimmlu_anatomy", "openaimmlu_college_medicine", "openaimmlu_professional_medicine", "openaimmlu_global_facts", "openaimmlu_medical_genetics", "openaimmlu_miscellaneous", "openaimmlu_nutrition", "openaimmlu_formal_logic", "openaimmlu_high_school_psychology", "openaimmlu_clinical_knowledge", "openaimmlu_virology", "openaimmlu_professional_accounting" ], "openaimmlu_STEM": [ "openaimmlu_college_mathematics", "openaimmlu_abstract_algebra", "openaimmlu_college_biology", "openaimmlu_computer_security", "openaimmlu_high_school_biology", "openaimmlu_college_physics", "openaimmlu_high_school_physics", "openaimmlu_elementary_mathematics", "openaimmlu_conceptual_physics", "openaimmlu_high_school_computer_science", "openaimmlu_high_school_statistics", "openaimmlu_electrical_engineering", "openaimmlu_college_computer_science", "openaimmlu_high_school_chemistry", "openaimmlu_college_chemistry", "openaimmlu_econometrics", "openaimmlu_astronomy", "openaimmlu_high_school_mathematics" ], "openaimmlu": [ "openaimmlu_STEM", "openaimmlu_other", "openaimmlu_social_science", "openaimmlu_humanities" ] }, "configs": { "openaimmlu_abstract_algebra": { "task": "openaimmlu_abstract_algebra", "task_alias": "abstract_algebra", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "abstract_algebra", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_anatomy": { "task": "openaimmlu_anatomy", "task_alias": "anatomy", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "anatomy", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_astronomy": { "task": "openaimmlu_astronomy", "task_alias": "astronomy", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "astronomy", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_business_ethics": { "task": "openaimmlu_business_ethics", "task_alias": "business_ethics", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "business_ethics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_clinical_knowledge": { "task": "openaimmlu_clinical_knowledge", "task_alias": "clinical_knowledge", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "clinical_knowledge", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_college_biology": { "task": "openaimmlu_college_biology", "task_alias": "college_biology", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "college_biology", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_college_chemistry": { "task": "openaimmlu_college_chemistry", "task_alias": "college_chemistry", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "college_chemistry", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_college_computer_science": { "task": "openaimmlu_college_computer_science", "task_alias": "college_computer_science", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "college_computer_science", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_college_mathematics": { "task": "openaimmlu_college_mathematics", "task_alias": "college_mathematics", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "college_mathematics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_college_medicine": { "task": "openaimmlu_college_medicine", "task_alias": "college_medicine", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "college_medicine", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_college_physics": { "task": "openaimmlu_college_physics", "task_alias": "college_physics", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "college_physics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_computer_security": { "task": "openaimmlu_computer_security", "task_alias": "computer_security", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "computer_security", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_conceptual_physics": { "task": "openaimmlu_conceptual_physics", "task_alias": "conceptual_physics", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "conceptual_physics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_econometrics": { "task": "openaimmlu_econometrics", "task_alias": "econometrics", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "econometrics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_electrical_engineering": { "task": "openaimmlu_electrical_engineering", "task_alias": "electrical_engineering", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "electrical_engineering", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_elementary_mathematics": { "task": "openaimmlu_elementary_mathematics", "task_alias": "elementary_mathematics", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "elementary_mathematics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_formal_logic": { "task": "openaimmlu_formal_logic", "task_alias": "formal_logic", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "formal_logic", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_global_facts": { "task": "openaimmlu_global_facts", "task_alias": "global_facts", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "global_facts", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_biology": { "task": "openaimmlu_high_school_biology", "task_alias": "high_school_biology", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_biology", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_chemistry": { "task": "openaimmlu_high_school_chemistry", "task_alias": "high_school_chemistry", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_chemistry", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_computer_science": { "task": "openaimmlu_high_school_computer_science", "task_alias": "high_school_computer_science", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_computer_science", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_european_history": { "task": "openaimmlu_high_school_european_history", "task_alias": "high_school_european_history", "tag": "openaimmlu_humanities_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_european_history", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_geography": { "task": "openaimmlu_high_school_geography", "task_alias": "high_school_geography", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_geography", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_government_and_politics": { "task": "openaimmlu_high_school_government_and_politics", "task_alias": "high_school_government_and_politics", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_government_and_politics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_macroeconomics": { "task": "openaimmlu_high_school_macroeconomics", "task_alias": "high_school_macroeconomics", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_macroeconomics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_mathematics": { "task": "openaimmlu_high_school_mathematics", "task_alias": "high_school_mathematics", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_mathematics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_microeconomics": { "task": "openaimmlu_high_school_microeconomics", "task_alias": "high_school_microeconomics", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_microeconomics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_physics": { "task": "openaimmlu_high_school_physics", "task_alias": "high_school_physics", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_physics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_psychology": { "task": "openaimmlu_high_school_psychology", "task_alias": "high_school_psychology", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_psychology", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_statistics": { "task": "openaimmlu_high_school_statistics", "task_alias": "high_school_statistics", "tag": "openaimmlu_STEM_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_statistics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_us_history": { "task": "openaimmlu_high_school_us_history", "task_alias": "high_school_us_history", "tag": "openaimmlu_humanities_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_us_history", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_high_school_world_history": { "task": "openaimmlu_high_school_world_history", "task_alias": "high_school_world_history", "tag": "openaimmlu_humanities_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "high_school_world_history", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_human_aging": { "task": "openaimmlu_human_aging", "task_alias": "human_aging", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "human_aging", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_human_sexuality": { "task": "openaimmlu_human_sexuality", "task_alias": "human_sexuality", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "human_sexuality", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_international_law": { "task": "openaimmlu_international_law", "task_alias": "international_law", "tag": "openaimmlu_humanities_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "international_law", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_jurisprudence": { "task": "openaimmlu_jurisprudence", "task_alias": "jurisprudence", "tag": "openaimmlu_humanities_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "jurisprudence", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_logical_fallacies": { "task": "openaimmlu_logical_fallacies", "task_alias": "logical_fallacies", "tag": "openaimmlu_humanities_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "logical_fallacies", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_machine_learning": { "task": "openaimmlu_machine_learning", "task_alias": "machine_learning", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "machine_learning", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_management": { "task": "openaimmlu_management", "task_alias": "management", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "management", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_marketing": { "task": "openaimmlu_marketing", "task_alias": "marketing", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "marketing", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_medical_genetics": { "task": "openaimmlu_medical_genetics", "task_alias": "medical_genetics", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "medical_genetics", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_miscellaneous": { "task": "openaimmlu_miscellaneous", "task_alias": "miscellaneous", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "miscellaneous", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_moral_disputes": { "task": "openaimmlu_moral_disputes", "task_alias": "moral_disputes", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "moral_disputes", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_moral_scenarios": { "task": "openaimmlu_moral_scenarios", "task_alias": "moral_scenarios", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "moral_scenarios", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_nutrition": { "task": "openaimmlu_nutrition", "task_alias": "nutrition", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "nutrition", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_philosophy": { "task": "openaimmlu_philosophy", "task_alias": "philosophy", "tag": "openaimmlu_humanities_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "philosophy", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_prehistory": { "task": "openaimmlu_prehistory", "task_alias": "prehistory", "tag": "openaimmlu_humanities_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "prehistory", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_professional_accounting": { "task": "openaimmlu_professional_accounting", "task_alias": "professional_accounting", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "professional_accounting", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_professional_law": { "task": "openaimmlu_professional_law", "task_alias": "professional_law", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "professional_law", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_professional_medicine": { "task": "openaimmlu_professional_medicine", "task_alias": "professional_medicine", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "professional_medicine", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_professional_psychology": { "task": "openaimmlu_professional_psychology", "task_alias": "professional_psychology", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "professional_psychology", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_public_relations": { "task": "openaimmlu_public_relations", "task_alias": "public_relations", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "public_relations", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_security_studies": { "task": "openaimmlu_security_studies", "task_alias": "security_studies", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "security_studies", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_sociology": { "task": "openaimmlu_sociology", "task_alias": "sociology", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "sociology", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_us_foreign_policy": { "task": "openaimmlu_us_foreign_policy", "task_alias": "us_foreign_policy", "tag": "openaimmlu_social_science_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "us_foreign_policy", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_virology": { "task": "openaimmlu_virology", "task_alias": "virology", "tag": "openaimmlu_other_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "virology", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "openaimmlu_world_religions": { "task": "openaimmlu_world_religions", "task_alias": "world_religions", "tag": "openaimmlu_humanities_tasks", "dataset_path": "khalidalt/openai_mmlu_arabic", "dataset_name": "world_religions", "test_split": "test", "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", "doc_to_text": "query", "doc_to_target": "gold", "doc_to_choice": "choices", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } } }, "versions": { "openaimmlu": 0, "openaimmlu_STEM": 0, "openaimmlu_abstract_algebra": 0.0, "openaimmlu_anatomy": 0.0, "openaimmlu_astronomy": 0.0, "openaimmlu_business_ethics": 0.0, "openaimmlu_clinical_knowledge": 0.0, "openaimmlu_college_biology": 0.0, "openaimmlu_college_chemistry": 0.0, "openaimmlu_college_computer_science": 0.0, "openaimmlu_college_mathematics": 0.0, "openaimmlu_college_medicine": 0.0, "openaimmlu_college_physics": 0.0, "openaimmlu_computer_security": 0.0, "openaimmlu_conceptual_physics": 0.0, "openaimmlu_econometrics": 0.0, "openaimmlu_electrical_engineering": 0.0, "openaimmlu_elementary_mathematics": 0.0, "openaimmlu_formal_logic": 0.0, "openaimmlu_global_facts": 0.0, "openaimmlu_high_school_biology": 0.0, "openaimmlu_high_school_chemistry": 0.0, "openaimmlu_high_school_computer_science": 0.0, "openaimmlu_high_school_european_history": 0.0, "openaimmlu_high_school_geography": 0.0, "openaimmlu_high_school_government_and_politics": 0.0, "openaimmlu_high_school_macroeconomics": 0.0, "openaimmlu_high_school_mathematics": 0.0, "openaimmlu_high_school_microeconomics": 0.0, "openaimmlu_high_school_physics": 0.0, "openaimmlu_high_school_psychology": 0.0, "openaimmlu_high_school_statistics": 0.0, "openaimmlu_high_school_us_history": 0.0, "openaimmlu_high_school_world_history": 0.0, "openaimmlu_human_aging": 0.0, "openaimmlu_human_sexuality": 0.0, "openaimmlu_humanities": 0, "openaimmlu_international_law": 0.0, "openaimmlu_jurisprudence": 0.0, "openaimmlu_logical_fallacies": 0.0, "openaimmlu_machine_learning": 0.0, "openaimmlu_management": 0.0, "openaimmlu_marketing": 0.0, "openaimmlu_medical_genetics": 0.0, "openaimmlu_miscellaneous": 0.0, "openaimmlu_moral_disputes": 0.0, "openaimmlu_moral_scenarios": 0.0, "openaimmlu_nutrition": 0.0, "openaimmlu_other": 0, "openaimmlu_philosophy": 0.0, "openaimmlu_prehistory": 0.0, "openaimmlu_professional_accounting": 0.0, "openaimmlu_professional_law": 0.0, "openaimmlu_professional_medicine": 0.0, "openaimmlu_professional_psychology": 0.0, "openaimmlu_public_relations": 0.0, "openaimmlu_security_studies": 0.0, "openaimmlu_social_science": 0, "openaimmlu_sociology": 0.0, "openaimmlu_us_foreign_policy": 0.0, "openaimmlu_virology": 0.0, "openaimmlu_world_religions": 0.0 }, "n-shot": { "openaimmlu_abstract_algebra": 0, "openaimmlu_anatomy": 0, "openaimmlu_astronomy": 0, "openaimmlu_business_ethics": 0, "openaimmlu_clinical_knowledge": 0, "openaimmlu_college_biology": 0, "openaimmlu_college_chemistry": 0, "openaimmlu_college_computer_science": 0, "openaimmlu_college_mathematics": 0, "openaimmlu_college_medicine": 0, "openaimmlu_college_physics": 0, "openaimmlu_computer_security": 0, "openaimmlu_conceptual_physics": 0, "openaimmlu_econometrics": 0, "openaimmlu_electrical_engineering": 0, "openaimmlu_elementary_mathematics": 0, "openaimmlu_formal_logic": 0, "openaimmlu_global_facts": 0, "openaimmlu_high_school_biology": 0, "openaimmlu_high_school_chemistry": 0, "openaimmlu_high_school_computer_science": 0, "openaimmlu_high_school_european_history": 0, "openaimmlu_high_school_geography": 0, "openaimmlu_high_school_government_and_politics": 0, "openaimmlu_high_school_macroeconomics": 0, "openaimmlu_high_school_mathematics": 0, "openaimmlu_high_school_microeconomics": 0, "openaimmlu_high_school_physics": 0, "openaimmlu_high_school_psychology": 0, "openaimmlu_high_school_statistics": 0, "openaimmlu_high_school_us_history": 0, "openaimmlu_high_school_world_history": 0, "openaimmlu_human_aging": 0, "openaimmlu_human_sexuality": 0, "openaimmlu_international_law": 0, "openaimmlu_jurisprudence": 0, "openaimmlu_logical_fallacies": 0, "openaimmlu_machine_learning": 0, "openaimmlu_management": 0, "openaimmlu_marketing": 0, "openaimmlu_medical_genetics": 0, "openaimmlu_miscellaneous": 0, "openaimmlu_moral_disputes": 0, "openaimmlu_moral_scenarios": 0, "openaimmlu_nutrition": 0, "openaimmlu_philosophy": 0, "openaimmlu_prehistory": 0, "openaimmlu_professional_accounting": 0, "openaimmlu_professional_law": 0, "openaimmlu_professional_medicine": 0, "openaimmlu_professional_psychology": 0, "openaimmlu_public_relations": 0, "openaimmlu_security_studies": 0, "openaimmlu_sociology": 0, "openaimmlu_us_foreign_policy": 0, "openaimmlu_virology": 0, "openaimmlu_world_religions": 0 }, "higher_is_better": { "openaimmlu": { "acc": true }, "openaimmlu_STEM": { "acc": true }, "openaimmlu_abstract_algebra": { "acc": true }, "openaimmlu_anatomy": { "acc": true }, "openaimmlu_astronomy": { "acc": true }, "openaimmlu_business_ethics": { "acc": true }, "openaimmlu_clinical_knowledge": { "acc": true }, "openaimmlu_college_biology": { "acc": true }, "openaimmlu_college_chemistry": { "acc": true }, "openaimmlu_college_computer_science": { "acc": true }, "openaimmlu_college_mathematics": { "acc": true }, "openaimmlu_college_medicine": { "acc": true }, "openaimmlu_college_physics": { "acc": true }, "openaimmlu_computer_security": { "acc": true }, "openaimmlu_conceptual_physics": { "acc": true }, "openaimmlu_econometrics": { "acc": true }, "openaimmlu_electrical_engineering": { "acc": true }, "openaimmlu_elementary_mathematics": { "acc": true }, "openaimmlu_formal_logic": { "acc": true }, "openaimmlu_global_facts": { "acc": true }, "openaimmlu_high_school_biology": { "acc": true }, "openaimmlu_high_school_chemistry": { "acc": true }, "openaimmlu_high_school_computer_science": { "acc": true }, "openaimmlu_high_school_european_history": { "acc": true }, "openaimmlu_high_school_geography": { "acc": true }, "openaimmlu_high_school_government_and_politics": { "acc": true }, "openaimmlu_high_school_macroeconomics": { "acc": true }, "openaimmlu_high_school_mathematics": { "acc": true }, "openaimmlu_high_school_microeconomics": { "acc": true }, "openaimmlu_high_school_physics": { "acc": true }, "openaimmlu_high_school_psychology": { "acc": true }, "openaimmlu_high_school_statistics": { "acc": true }, "openaimmlu_high_school_us_history": { "acc": true }, "openaimmlu_high_school_world_history": { "acc": true }, "openaimmlu_human_aging": { "acc": true }, "openaimmlu_human_sexuality": { "acc": true }, "openaimmlu_humanities": { "acc": true }, "openaimmlu_international_law": { "acc": true }, "openaimmlu_jurisprudence": { "acc": true }, "openaimmlu_logical_fallacies": { "acc": true }, "openaimmlu_machine_learning": { "acc": true }, "openaimmlu_management": { "acc": true }, "openaimmlu_marketing": { "acc": true }, "openaimmlu_medical_genetics": { "acc": true }, "openaimmlu_miscellaneous": { "acc": true }, "openaimmlu_moral_disputes": { "acc": true }, "openaimmlu_moral_scenarios": { "acc": true }, "openaimmlu_nutrition": { "acc": true }, "openaimmlu_other": { "acc": true }, "openaimmlu_philosophy": { "acc": true }, "openaimmlu_prehistory": { "acc": true }, "openaimmlu_professional_accounting": { "acc": true }, "openaimmlu_professional_law": { "acc": true }, "openaimmlu_professional_medicine": { "acc": true }, "openaimmlu_professional_psychology": { "acc": true }, "openaimmlu_public_relations": { "acc": true }, "openaimmlu_security_studies": { "acc": true }, "openaimmlu_social_science": { "acc": true }, "openaimmlu_sociology": { "acc": true }, "openaimmlu_us_foreign_policy": { "acc": true }, "openaimmlu_virology": { "acc": true }, "openaimmlu_world_religions": { "acc": true } }, "n-samples": { "openaimmlu_college_mathematics": { "original": 100, "effective": 100 }, "openaimmlu_abstract_algebra": { "original": 100, "effective": 100 }, "openaimmlu_college_biology": { "original": 144, "effective": 144 }, "openaimmlu_computer_security": { "original": 100, "effective": 100 }, "openaimmlu_high_school_biology": { "original": 310, "effective": 310 }, "openaimmlu_college_physics": { "original": 102, "effective": 102 }, "openaimmlu_high_school_physics": { "original": 151, "effective": 151 }, "openaimmlu_elementary_mathematics": { "original": 378, "effective": 378 }, "openaimmlu_conceptual_physics": { "original": 235, "effective": 235 }, "openaimmlu_high_school_computer_science": { "original": 100, "effective": 100 }, "openaimmlu_high_school_statistics": { "original": 216, "effective": 216 }, "openaimmlu_electrical_engineering": { "original": 145, "effective": 145 }, "openaimmlu_college_computer_science": { "original": 100, "effective": 100 }, "openaimmlu_high_school_chemistry": { "original": 203, "effective": 203 }, "openaimmlu_college_chemistry": { "original": 100, "effective": 100 }, "openaimmlu_econometrics": { "original": 114, "effective": 114 }, "openaimmlu_astronomy": { "original": 152, "effective": 152 }, "openaimmlu_high_school_mathematics": { "original": 270, "effective": 270 }, "openaimmlu_professional_law": { "original": 1534, "effective": 1534 }, "openaimmlu_professional_psychology": { "original": 612, "effective": 612 }, "openaimmlu_machine_learning": { "original": 112, "effective": 112 }, "openaimmlu_human_aging": { "original": 223, "effective": 223 }, "openaimmlu_high_school_geography": { "original": 198, "effective": 198 }, "openaimmlu_anatomy": { "original": 135, "effective": 135 }, "openaimmlu_college_medicine": { "original": 173, "effective": 173 }, "openaimmlu_professional_medicine": { "original": 272, "effective": 272 }, "openaimmlu_global_facts": { "original": 100, "effective": 100 }, "openaimmlu_medical_genetics": { "original": 100, "effective": 100 }, "openaimmlu_miscellaneous": { "original": 783, "effective": 783 }, "openaimmlu_nutrition": { "original": 306, "effective": 306 }, "openaimmlu_formal_logic": { "original": 126, "effective": 126 }, "openaimmlu_high_school_psychology": { "original": 545, "effective": 545 }, "openaimmlu_clinical_knowledge": { "original": 265, "effective": 265 }, "openaimmlu_virology": { "original": 166, "effective": 166 }, "openaimmlu_professional_accounting": { "original": 282, "effective": 282 }, "openaimmlu_us_foreign_policy": { "original": 100, "effective": 100 }, "openaimmlu_high_school_microeconomics": { "original": 238, "effective": 238 }, "openaimmlu_moral_scenarios": { "original": 895, "effective": 895 }, "openaimmlu_high_school_government_and_politics": { "original": 193, "effective": 193 }, "openaimmlu_management": { "original": 103, "effective": 103 }, "openaimmlu_moral_disputes": { "original": 346, "effective": 346 }, "openaimmlu_public_relations": { "original": 110, "effective": 110 }, "openaimmlu_human_sexuality": { "original": 131, "effective": 131 }, "openaimmlu_security_studies": { "original": 245, "effective": 245 }, "openaimmlu_business_ethics": { "original": 100, "effective": 100 }, "openaimmlu_sociology": { "original": 201, "effective": 201 }, "openaimmlu_high_school_macroeconomics": { "original": 390, "effective": 390 }, "openaimmlu_marketing": { "original": 234, "effective": 234 }, "openaimmlu_logical_fallacies": { "original": 163, "effective": 163 }, "openaimmlu_philosophy": { "original": 311, "effective": 311 }, "openaimmlu_international_law": { "original": 121, "effective": 121 }, "openaimmlu_high_school_us_history": { "original": 204, "effective": 204 }, "openaimmlu_jurisprudence": { "original": 108, "effective": 108 }, "openaimmlu_prehistory": { "original": 324, "effective": 324 }, "openaimmlu_world_religions": { "original": 171, "effective": 171 }, "openaimmlu_high_school_world_history": { "original": 237, "effective": 237 }, "openaimmlu_high_school_european_history": { "original": 165, "effective": 165 } }, "config": { "model": "vllm", "model_args": "pretrained=inceptionai/jais-family-13b-chat,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.4,download_dir=/tmp", "batch_size": 1, "batch_sizes": [], "device": null, "use_cache": null, "limit": null, "bootstrap_iters": 100000, "gen_kwargs": null, "random_seed": 0, "numpy_seed": 1234, "torch_seed": 1234, "fewshot_seed": 1234 }, "git_hash": "8e1bd48d", "date": 1735754494.9131842, "pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect", "transformers_version": "4.47.1", "upper_git_hash": "f64fe2f2a86055aaecced603b56097fd79201711", "tokenizer_pad_token": [ "<|endoftext|>", "0" ], "tokenizer_eos_token": [ "<|endoftext|>", "0" ], "tokenizer_bos_token": [ "<|endoftext|>", "0" ], "eot_token_id": 0, "max_length": 2048, "task_hashes": {}, "model_source": "vllm", "model_name": "inceptionai/jais-family-13b-chat", "model_name_sanitized": "inceptionai__jais-family-13b-chat", "system_instruction": null, "system_instruction_sha": null, "fewshot_as_multiturn": false, "chat_template": null, "chat_template_sha": null, "start_time": 8300.499232358, "end_time": 9045.254644093, "total_evaluation_time_seconds": "744.7554117349991" }