{
  "results": {
    "gat": {
      "acc,none": 0.3171328232785652,
      "acc_stderr,none": 0.003637711553191521,
      "alias": "gat"
    },
    "gat_algebra": {
      "alias": " - gat_algebra",
      "acc,none": 0.27606679035250464,
      "acc_stderr,none": 0.008613061282358605
    },
    "gat_analogy": {
      "alias": " - gat_analogy",
      "acc,none": 0.28123861566484515,
      "acc_stderr,none": 0.008582973872557074
    },
    "gat_arithmetic": {
      "alias": " - gat_arithmetic",
      "acc,none": 0.2465955097534045,
      "acc_stderr,none": 0.008270691113113376
    },
    "gat_association": {
      "alias": " - gat_association",
      "acc,none": 0.40095693779904307,
      "acc_stderr,none": 0.015167976191724952
    },
    "gat_comparisons": {
      "alias": " - gat_comparisons",
      "acc,none": 0.28524590163934427,
      "acc_stderr,none": 0.01293260999733446
    },
    "gat_completion": {
      "alias": " - gat_completion",
      "acc,none": 0.4049586776859504,
      "acc_stderr,none": 0.014117759116052656
    },
    "gat_contextual": {
      "alias": " - gat_contextual",
      "acc,none": 0.2691717791411043,
      "acc_stderr,none": 0.012287123099249574
    },
    "gat_geometry": {
      "alias": " - gat_geometry",
      "acc,none": 0.2219178082191781,
      "acc_stderr,none": 0.021780012425347273
    },
    "gat_reading": {
      "alias": " - gat_reading",
      "acc,none": 0.44688090737240077,
      "acc_stderr,none": 0.009668842804567196
    }
  },
  "groups": {
    "gat": {
      "acc,none": 0.3171328232785652,
      "acc_stderr,none": 0.003637711553191521,
      "alias": "gat"
    }
  },
  "group_subtasks": {
    "gat": [
      "gat_analogy",
      "gat_association",
      "gat_completion",
      "gat_reading",
      "gat_algebra",
      "gat_arithmetic",
      "gat_comparisons",
      "gat_contextual",
      "gat_geometry"
    ]
  },
  "configs": {
    "gat_algebra": {
      "task": "gat_algebra",
      "dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
      "dataset_name": "algebra",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n    # def _process_doc(doc):\n    \n    #     subject = doc['id'].split(\"-\")[0]\n    #     subject_ar = subtasks_ar[subtasks.index(subject)]\n    #     out_doc = {**doc, 'subject_ar': subject_ar}\n    #     print(subject_ar)\n    #     print(out_doc)\n    #     return out_doc\n\n    return dataset\n",
      "doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
      "doc_to_target": "{{label}}",
      "doc_to_choice": [
        "\u0623",
        "\u0628",
        "\u062c",
        "\u062f"
      ],
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "gat_analogy": {
      "task": "gat_analogy",
      "dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
      "dataset_name": "analogy",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n    # def _process_doc(doc):\n    \n    #     subject = doc['id'].split(\"-\")[0]\n    #     subject_ar = subtasks_ar[subtasks.index(subject)]\n    #     out_doc = {**doc, 'subject_ar': subject_ar}\n    #     print(subject_ar)\n    #     print(out_doc)\n    #     return out_doc\n\n    return dataset\n",
      "doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
      "doc_to_target": "{{label}}",
      "doc_to_choice": [
        "\u0623",
        "\u0628",
        "\u062c",
        "\u062f"
      ],
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "gat_arithmetic": {
      "task": "gat_arithmetic",
      "dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
      "dataset_name": "arithmetic",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n    # def _process_doc(doc):\n    \n    #     subject = doc['id'].split(\"-\")[0]\n    #     subject_ar = subtasks_ar[subtasks.index(subject)]\n    #     out_doc = {**doc, 'subject_ar': subject_ar}\n    #     print(subject_ar)\n    #     print(out_doc)\n    #     return out_doc\n\n    return dataset\n",
      "doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
      "doc_to_target": "{{label}}",
      "doc_to_choice": [
        "\u0623",
        "\u0628",
        "\u062c",
        "\u062f"
      ],
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "gat_association": {
      "task": "gat_association",
      "dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
      "dataset_name": "association",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n    # def _process_doc(doc):\n    \n    #     subject = doc['id'].split(\"-\")[0]\n    #     subject_ar = subtasks_ar[subtasks.index(subject)]\n    #     out_doc = {**doc, 'subject_ar': subject_ar}\n    #     print(subject_ar)\n    #     print(out_doc)\n    #     return out_doc\n\n    return dataset\n",
      "doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
      "doc_to_target": "{{label}}",
      "doc_to_choice": [
        "\u0623",
        "\u0628",
        "\u062c",
        "\u062f"
      ],
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "gat_comparisons": {
      "task": "gat_comparisons",
      "dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
      "dataset_name": "comparisons",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n    # def _process_doc(doc):\n    \n    #     subject = doc['id'].split(\"-\")[0]\n    #     subject_ar = subtasks_ar[subtasks.index(subject)]\n    #     out_doc = {**doc, 'subject_ar': subject_ar}\n    #     print(subject_ar)\n    #     print(out_doc)\n    #     return out_doc\n\n    return dataset\n",
      "doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
      "doc_to_target": "{{label}}",
      "doc_to_choice": [
        "\u0623",
        "\u0628",
        "\u062c",
        "\u062f"
      ],
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "gat_completion": {
      "task": "gat_completion",
      "dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
      "dataset_name": "completion",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n    # def _process_doc(doc):\n    \n    #     subject = doc['id'].split(\"-\")[0]\n    #     subject_ar = subtasks_ar[subtasks.index(subject)]\n    #     out_doc = {**doc, 'subject_ar': subject_ar}\n    #     print(subject_ar)\n    #     print(out_doc)\n    #     return out_doc\n\n    return dataset\n",
      "doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
      "doc_to_target": "{{label}}",
      "doc_to_choice": [
        "\u0623",
        "\u0628",
        "\u062c",
        "\u062f"
      ],
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "gat_contextual": {
      "task": "gat_contextual",
      "dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
      "dataset_name": "contextual",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n    # def _process_doc(doc):\n    \n    #     subject = doc['id'].split(\"-\")[0]\n    #     subject_ar = subtasks_ar[subtasks.index(subject)]\n    #     out_doc = {**doc, 'subject_ar': subject_ar}\n    #     print(subject_ar)\n    #     print(out_doc)\n    #     return out_doc\n\n    return dataset\n",
      "doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
      "doc_to_target": "{{label}}",
      "doc_to_choice": [
        "\u0623",
        "\u0628",
        "\u062c",
        "\u062f"
      ],
      "description": "\u0627\u0648\u062c\u062f \u0627\u0644\u062e\u0637\u0623 \u0627\u0644\u0633\u064a\u0627\u0642\u064a \u0641\u064a \u0627\u0644\u0639\u0628\u0627\u0631\u0629 \u0627\u0644\u062a\u0627\u0644\u064a\u0629 \u0645\u0646 \u0628\u064a\u0646 \u0627\u0644\u062e\u064a\u0627\u0631\u0627\u062a:",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "gat_geometry": {
      "task": "gat_geometry",
      "dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
      "dataset_name": "geometry",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n    # def _process_doc(doc):\n    \n    #     subject = doc['id'].split(\"-\")[0]\n    #     subject_ar = subtasks_ar[subtasks.index(subject)]\n    #     out_doc = {**doc, 'subject_ar': subject_ar}\n    #     print(subject_ar)\n    #     print(out_doc)\n    #     return out_doc\n\n    return dataset\n",
      "doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
      "doc_to_target": "{{label}}",
      "doc_to_choice": [
        "\u0623",
        "\u0628",
        "\u062c",
        "\u062f"
      ],
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "gat_reading": {
      "task": "gat_reading",
      "dataset_path": "lm_eval/tasks/gat/gat_data/gat.py",
      "dataset_name": "reading",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n    # def _process_doc(doc):\n    \n    #     subject = doc['id'].split(\"-\")[0]\n    #     subject_ar = subtasks_ar[subtasks.index(subject)]\n    #     out_doc = {**doc, 'subject_ar': subject_ar}\n    #     print(subject_ar)\n    #     print(out_doc)\n    #     return out_doc\n\n    return dataset\n",
      "doc_to_text": "{{question}}\n\u0623. {{choices[0]}}\n\u0628. {{choices[1]}}\n\u062c. {{choices[2]}}\n\u062f. {{choices[3]}}\n\u0627\u0644\u0627\u062c\u0627\u0628\u0629:",
      "doc_to_target": "{{label}}",
      "doc_to_choice": [
        "\u0623",
        "\u0628",
        "\u062c",
        "\u062f"
      ],
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    }
  },
  "versions": {
    "gat": 0,
    "gat_algebra": 0.0,
    "gat_analogy": 0.0,
    "gat_arithmetic": 0.0,
    "gat_association": 0.0,
    "gat_comparisons": 0.0,
    "gat_completion": 0.0,
    "gat_contextual": 0.0,
    "gat_geometry": 0.0,
    "gat_reading": 0.0
  },
  "n-shot": {
    "gat_algebra": 0,
    "gat_analogy": 0,
    "gat_arithmetic": 0,
    "gat_association": 0,
    "gat_comparisons": 0,
    "gat_completion": 0,
    "gat_contextual": 0,
    "gat_geometry": 0,
    "gat_reading": 0
  },
  "higher_is_better": {
    "gat": {
      "acc": true
    },
    "gat_algebra": {
      "acc": true
    },
    "gat_analogy": {
      "acc": true
    },
    "gat_arithmetic": {
      "acc": true
    },
    "gat_association": {
      "acc": true
    },
    "gat_comparisons": {
      "acc": true
    },
    "gat_completion": {
      "acc": true
    },
    "gat_contextual": {
      "acc": true
    },
    "gat_geometry": {
      "acc": true
    },
    "gat_reading": {
      "acc": true
    }
  },
  "n-samples": {
    "gat_analogy": {
      "original": 2745,
      "effective": 2745
    },
    "gat_association": {
      "original": 1045,
      "effective": 1045
    },
    "gat_completion": {
      "original": 1210,
      "effective": 1210
    },
    "gat_reading": {
      "original": 2645,
      "effective": 2645
    },
    "gat_algebra": {
      "original": 2695,
      "effective": 2695
    },
    "gat_arithmetic": {
      "original": 2717,
      "effective": 2717
    },
    "gat_comparisons": {
      "original": 1220,
      "effective": 1220
    },
    "gat_contextual": {
      "original": 1304,
      "effective": 1304
    },
    "gat_geometry": {
      "original": 365,
      "effective": 365
    }
  },
  "config": {
    "model": "hf",
    "model_args": "parallelize=False,pretrained=inceptionai/jais-family-6p7b-chat,trust_remote_code=True,mm=False",
    "model_num_parameters": 6794562592,
    "model_dtype": "torch.float32",
    "model_revision": "main",
    "model_sha": "683805efe6126c6536feb4aa23317e70222ac94c",
    "batch_size": 1,
    "batch_sizes": [],
    "device": null,
    "use_cache": null,
    "limit": null,
    "bootstrap_iters": 100000,
    "gen_kwargs": null,
    "random_seed": 0,
    "numpy_seed": 1234,
    "torch_seed": 1234,
    "fewshot_seed": 1234
  },
  "git_hash": "3127d82f",
  "date": 1731226939.498854,
  "pretty_env_info": "PyTorch version: 2.1.0a0+29c30b1\nIs debug build: False\nCUDA used to build PyTorch: 12.2\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture:                       x86_64\nCPU op-mode(s):                     32-bit, 64-bit\nAddress sizes:                      48 bits physical, 48 bits virtual\nByte Order:                         Little Endian\nCPU(s):                             48\nOn-line CPU(s) list:                0-47\nVendor ID:                          AuthenticAMD\nModel name:                         AMD EPYC 7V13 64-Core Processor\nCPU family:                         25\nModel:                              1\nThread(s) per core:                 1\nCore(s) per socket:                 48\nSocket(s):                          1\nStepping:                           1\nBogoMIPS:                           4890.87\nFlags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor:                  Microsoft\nVirtualization type:                full\nL1d cache:                          1.5 MiB (48 instances)\nL1i cache:                          1.5 MiB (48 instances)\nL2 cache:                           24 MiB (48 instances)\nL3 cache:                           192 MiB (6 instances)\nNUMA node(s):                       2\nNUMA node0 CPU(s):                  0-23\nNUMA node1 CPU(s):                  24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit:        Not affected\nVulnerability L1tf:                 Not affected\nVulnerability Mds:                  Not affected\nVulnerability Meltdown:             Not affected\nVulnerability Mmio stale data:      Not affected\nVulnerability Retbleed:             Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass:    Vulnerable\nVulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2:           Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds:                Not affected\nVulnerability Tsx async abort:      Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.22.2\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.1.0a0+29c30b1\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.16.0a0\n[pip3] triton==2.0.0.dev20221202\n[conda] Could not collect",
  "transformers_version": "4.31.0",
  "upper_git_hash": null,
  "tokenizer_pad_token": [
    "<|endoftext|>",
    "0"
  ],
  "tokenizer_eos_token": [
    "<|endoftext|>",
    "0"
  ],
  "tokenizer_bos_token": [
    "<|endoftext|>",
    "0"
  ],
  "eot_token_id": 0,
  "max_length": 2048,
  "task_hashes": {},
  "model_source": "hf",
  "model_name": "inceptionai/jais-family-6p7b-chat",
  "model_name_sanitized": "inceptionai__jais-family-6p7b-chat",
  "system_instruction": null,
  "system_instruction_sha": null,
  "fewshot_as_multiturn": false,
  "chat_template": null,
  "chat_template_sha": null,
  "start_time": 995.895425189,
  "end_time": 2393.445262439,
  "total_evaluation_time_seconds": "1397.54983725"
}