{
  "results": {
    "agieval": {
      "acc,none": 0.5544267053701016,
      "acc_stderr,none": 0.004859843455357734,
      "alias": "agieval"
    },
    "agieval_aqua_rat": {
      "alias": " - agieval_aqua_rat",
      "acc,none": 0.3700787401574803,
      "acc_stderr,none": 0.03035497929089593,
      "acc_norm,none": 0.38188976377952755,
      "acc_norm_stderr,none": 0.03054511159403859
    },
    "agieval_gaokao_biology": {
      "alias": " - agieval_gaokao_biology",
      "acc,none": 0.7380952380952381,
      "acc_stderr,none": 0.030412684459928757,
      "acc_norm,none": 0.7047619047619048,
      "acc_norm_stderr,none": 0.03155253554505398
    },
    "agieval_gaokao_chemistry": {
      "alias": " - agieval_gaokao_chemistry",
      "acc,none": 0.4444444444444444,
      "acc_stderr,none": 0.034620941824986436,
      "acc_norm,none": 0.36231884057971014,
      "acc_norm_stderr,none": 0.033489883876211865
    },
    "agieval_gaokao_chinese": {
      "alias": " - agieval_gaokao_chinese",
      "acc,none": 0.5528455284552846,
      "acc_stderr,none": 0.031764911338391044,
      "acc_norm,none": 0.5447154471544715,
      "acc_norm_stderr,none": 0.03181583027784235
    },
    "agieval_gaokao_english": {
      "alias": " - agieval_gaokao_english",
      "acc,none": 0.8464052287581699,
      "acc_stderr,none": 0.020645597910418787,
      "acc_norm,none": 0.8431372549019608,
      "acc_norm_stderr,none": 0.020823758837580905
    },
    "agieval_gaokao_geography": {
      "alias": " - agieval_gaokao_geography",
      "acc,none": 0.7688442211055276,
      "acc_stderr,none": 0.029959803439140443,
      "acc_norm,none": 0.7638190954773869,
      "acc_norm_stderr,none": 0.030184574030479208
    },
    "agieval_gaokao_history": {
      "alias": " - agieval_gaokao_history",
      "acc,none": 0.7489361702127659,
      "acc_stderr,none": 0.028346963777162452,
      "acc_norm,none": 0.7361702127659574,
      "acc_norm_stderr,none": 0.02880998985410295
    },
    "agieval_gaokao_mathcloze": {
      "alias": " - agieval_gaokao_mathcloze",
      "acc,none": 0.025423728813559324,
      "acc_stderr,none": 0.01455239952216708
    },
    "agieval_gaokao_mathqa": {
      "alias": " - agieval_gaokao_mathqa",
      "acc,none": 0.4188034188034188,
      "acc_stderr,none": 0.026371365163318804,
      "acc_norm,none": 0.37606837606837606,
      "acc_norm_stderr,none": 0.0258921362904796
    },
    "agieval_gaokao_physics": {
      "alias": " - agieval_gaokao_physics",
      "acc,none": 0.59,
      "acc_stderr,none": 0.034865138597849274,
      "acc_norm,none": 0.56,
      "acc_norm_stderr,none": 0.03518793763172071
    },
    "agieval_jec_qa_ca": {
      "alias": " - agieval_jec_qa_ca",
      "acc,none": 0.6466466466466466,
      "acc_stderr,none": 0.015131181922110867,
      "acc_norm,none": 0.5565565565565566,
      "acc_norm_stderr,none": 0.01572564618087532
    },
    "agieval_jec_qa_kd": {
      "alias": " - agieval_jec_qa_kd",
      "acc,none": 0.703,
      "acc_stderr,none": 0.0144568322948011,
      "acc_norm,none": 0.629,
      "acc_norm_stderr,none": 0.015283736211823187
    },
    "agieval_logiqa_en": {
      "alias": " - agieval_logiqa_en",
      "acc,none": 0.5944700460829493,
      "acc_stderr,none": 0.019258381208154284,
      "acc_norm,none": 0.533026113671275,
      "acc_norm_stderr,none": 0.01956878502638526
    },
    "agieval_logiqa_zh": {
      "alias": " - agieval_logiqa_zh",
      "acc,none": 0.5775729646697388,
      "acc_stderr,none": 0.01937414753071922,
      "acc_norm,none": 0.5253456221198156,
      "acc_norm_stderr,none": 0.019586400283373922
    },
    "agieval_lsat_ar": {
      "alias": " - agieval_lsat_ar",
      "acc,none": 0.33043478260869563,
      "acc_stderr,none": 0.031082903446842964,
      "acc_norm,none": 0.33043478260869563,
      "acc_norm_stderr,none": 0.031082903446842964
    },
    "agieval_lsat_lr": {
      "alias": " - agieval_lsat_lr",
      "acc,none": 0.7235294117647059,
      "acc_stderr,none": 0.019824108780753007,
      "acc_norm,none": 0.6313725490196078,
      "acc_norm_stderr,none": 0.021383450873181317
    },
    "agieval_lsat_rc": {
      "alias": " - agieval_lsat_rc",
      "acc,none": 0.7992565055762082,
      "acc_stderr,none": 0.024467885125224527,
      "acc_norm,none": 0.6728624535315985,
      "acc_norm_stderr,none": 0.02865899432669078
    },
    "agieval_math": {
      "alias": " - agieval_math",
      "acc,none": 0.069,
      "acc_stderr,none": 0.008018934050315138
    },
    "agieval_sat_en": {
      "alias": " - agieval_sat_en",
      "acc,none": 0.8640776699029126,
      "acc_stderr,none": 0.023935630169275284,
      "acc_norm,none": 0.7669902912621359,
      "acc_norm_stderr,none": 0.029526026912337827
    },
    "agieval_sat_en_without_passage": {
      "alias": " - agieval_sat_en_without_passage",
      "acc,none": 0.5145631067961165,
      "acc_stderr,none": 0.034906699050989067,
      "acc_norm,none": 0.4320388349514563,
      "acc_norm_stderr,none": 0.0345974255383149
    },
    "agieval_sat_math": {
      "alias": " - agieval_sat_math",
      "acc,none": 0.5727272727272728,
      "acc_stderr,none": 0.03342754338309286,
      "acc_norm,none": 0.5227272727272727,
      "acc_norm_stderr,none": 0.03375194708230163
    }
  },
  "groups": {
    "agieval": {
      "acc,none": 0.5544267053701016,
      "acc_stderr,none": 0.004859843455357734,
      "alias": "agieval"
    }
  },
  "group_subtasks": {
    "agieval": [
      "agieval_gaokao_biology",
      "agieval_gaokao_chemistry",
      "agieval_gaokao_chinese",
      "agieval_gaokao_geography",
      "agieval_gaokao_history",
      "agieval_gaokao_mathcloze",
      "agieval_gaokao_mathqa",
      "agieval_gaokao_physics",
      "agieval_jec_qa_ca",
      "agieval_jec_qa_kd",
      "agieval_logiqa_zh",
      "agieval_aqua_rat",
      "agieval_gaokao_english",
      "agieval_logiqa_en",
      "agieval_lsat_ar",
      "agieval_lsat_lr",
      "agieval_lsat_rc",
      "agieval_math",
      "agieval_sat_en_without_passage",
      "agieval_sat_en",
      "agieval_sat_math"
    ]
  },
  "configs": {
    "agieval_aqua_rat": {
      "task": "agieval_aqua_rat",
      "dataset_path": "hails/agieval-aqua-rat",
      "test_split": "test",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{gold}}",
      "doc_to_choice": "{{choices}}",
      "process_results": "def process_results_mcqa(doc, results):\n    results = [result[0] for result in results]\n\n    gold = doc[\"gold\"]\n\n    acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n    completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n    acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n    return {\n        \"acc\": acc,\n        \"acc_norm\": acc_norm,\n    }\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "agieval_gaokao_biology": {
      "task": "agieval_gaokao_biology",
      "dataset_path": "hails/agieval-gaokao-biology",
      "test_split": "test",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{gold}}",
      "doc_to_choice": "{{choices}}",
      "process_results": "def process_results_mcqa(doc, results):\n    results = [result[0] for result in results]\n\n    gold = doc[\"gold\"]\n\n    acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n    completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n    acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n    return {\n        \"acc\": acc,\n        \"acc_norm\": acc_norm,\n    }\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "agieval_gaokao_chemistry": {
      "task": "agieval_gaokao_chemistry",
      "dataset_path": "hails/agieval-gaokao-chemistry",
      "test_split": "test",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{gold}}",
      "doc_to_choice": "{{choices}}",
      "process_results": "def process_results_mcqa(doc, results):\n    results = [result[0] for result in results]\n\n    gold = doc[\"gold\"]\n\n    acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n    completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n    acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n    return {\n        \"acc\": acc,\n        \"acc_norm\": acc_norm,\n    }\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "agieval_gaokao_chinese": {
      "task": "agieval_gaokao_chinese",
      "dataset_path": "hails/agieval-gaokao-chinese",
      "test_split": "test",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{gold}}",
      "doc_to_choice": "{{choices}}",
      "process_results": "def process_results_mcqa(doc, results):\n    results = [result[0] for result in results]\n\n    gold = doc[\"gold\"]\n\n    acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n    completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n    acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n    return {\n        \"acc\": acc,\n        \"acc_norm\": acc_norm,\n    }\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "agieval_gaokao_english": {
      "task": "agieval_gaokao_english",
      "dataset_path": "hails/agieval-gaokao-english",
      "test_split": "test",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{gold}}",
      "doc_to_choice": "{{choices}}",
      "process_results": "def process_results_mcqa(doc, results):\n    results = [result[0] for result in results]\n\n    gold = doc[\"gold\"]\n\n    acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n    completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n    acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n    return {\n        \"acc\": acc,\n        \"acc_norm\": acc_norm,\n    }\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "agieval_gaokao_geography": {
      "task": "agieval_gaokao_geography",
      "dataset_path": "hails/agieval-gaokao-geography",
      "test_split": "test",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{gold}}",
      "doc_to_choice": "{{choices}}",
      "process_results": "def process_results_mcqa(doc, results):\n    results = [result[0] for result in results]\n\n    gold = doc[\"gold\"]\n\n    acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n    completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n    acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n    return {\n        \"acc\": acc,\n        \"acc_norm\": acc_norm,\n    }\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "agieval_gaokao_history": {
      "task": "agieval_gaokao_history",
      "dataset_path": "hails/agieval-gaokao-history",
      "test_split": "test",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{gold}}",
      "doc_to_choice": "{{choices}}",
      "process_results": "def process_results_mcqa(doc, results):\n    results = [result[0] for result in results]\n\n    gold = doc[\"gold\"]\n\n    acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n    completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n    acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n    return {\n        \"acc\": acc,\n        \"acc_norm\": acc_norm,\n    }\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "agieval_gaokao_mathcloze": {
      "task": "agieval_gaokao_mathcloze",
      "dataset_path": "hails/agieval-gaokao-mathcloze",
      "test_split": "test",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{answer}}",
      "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n    candidate = results[0]\n\n    gold = doc[\"answer\"]\n\n    if not gold:\n        print(doc, candidate, gold)\n    if is_equiv(candidate, gold):\n        retval = 1\n    else:\n        retval = 0\n\n    results = {\n        \"acc\": retval,\n    }\n    return results\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "max_gen_toks": 32,
        "do_sample": false,
        "temperature": 0.0,
        "until": [
          "Q:"
        ]
      },
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "agieval_gaokao_mathqa": {
      "task": "agieval_gaokao_mathqa",
      "dataset_path": "hails/agieval-gaokao-mathqa",
      "test_split": "test",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{gold}}",
      "doc_to_choice": "{{choices}}",
      "process_results": "def process_results_mcqa(doc, results):\n    results = [result[0] for result in results]\n\n    gold = doc[\"gold\"]\n\n    acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n    completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n    acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n    return {\n        \"acc\": acc,\n        \"acc_norm\": acc_norm,\n    }\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "agieval_gaokao_physics": {
      "task": "agieval_gaokao_physics",
      "dataset_path": "hails/agieval-gaokao-physics",
      "test_split": "test",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{gold}}",
      "doc_to_choice": "{{choices}}",
      "process_results": "def process_results_mcqa(doc, results):\n    results = [result[0] for result in results]\n\n    gold = doc[\"gold\"]\n\n    acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n    completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n    acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n    return {\n        \"acc\": acc,\n        \"acc_norm\": acc_norm,\n    }\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "agieval_jec_qa_ca": {
      "task": "agieval_jec_qa_ca",
      "dataset_path": "hails/agieval-jec-qa-ca",
      "test_split": "test",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{gold}}",
      "doc_to_choice": "{{choices}}",
      "process_results": "def process_results_mcqa(doc, results):\n    results = [result[0] for result in results]\n\n    gold = doc[\"gold\"]\n\n    acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n    completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n    acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n    return {\n        \"acc\": acc,\n        \"acc_norm\": acc_norm,\n    }\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "agieval_jec_qa_kd": {
      "task": "agieval_jec_qa_kd",
      "dataset_path": "hails/agieval-jec-qa-kd",
      "test_split": "test",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{gold}}",
      "doc_to_choice": "{{choices}}",
      "process_results": "def process_results_mcqa(doc, results):\n    results = [result[0] for result in results]\n\n    gold = doc[\"gold\"]\n\n    acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n    completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n    acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n    return {\n        \"acc\": acc,\n        \"acc_norm\": acc_norm,\n    }\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "agieval_logiqa_en": {
      "task": "agieval_logiqa_en",
      "dataset_path": "hails/agieval-logiqa-en",
      "test_split": "test",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{gold}}",
      "doc_to_choice": "{{choices}}",
      "process_results": "def process_results_mcqa(doc, results):\n    results = [result[0] for result in results]\n\n    gold = doc[\"gold\"]\n\n    acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n    completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n    acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n    return {\n        \"acc\": acc,\n        \"acc_norm\": acc_norm,\n    }\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "agieval_logiqa_zh": {
      "task": "agieval_logiqa_zh",
      "dataset_path": "hails/agieval-logiqa-zh",
      "test_split": "test",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{gold}}",
      "doc_to_choice": "{{choices}}",
      "process_results": "def process_results_mcqa(doc, results):\n    results = [result[0] for result in results]\n\n    gold = doc[\"gold\"]\n\n    acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n    completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n    acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n    return {\n        \"acc\": acc,\n        \"acc_norm\": acc_norm,\n    }\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "agieval_lsat_ar": {
      "task": "agieval_lsat_ar",
      "dataset_path": "hails/agieval-lsat-ar",
      "test_split": "test",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{gold}}",
      "doc_to_choice": "{{choices}}",
      "process_results": "def process_results_mcqa(doc, results):\n    results = [result[0] for result in results]\n\n    gold = doc[\"gold\"]\n\n    acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n    completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n    acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n    return {\n        \"acc\": acc,\n        \"acc_norm\": acc_norm,\n    }\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "agieval_lsat_lr": {
      "task": "agieval_lsat_lr",
      "dataset_path": "hails/agieval-lsat-lr",
      "test_split": "test",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{gold}}",
      "doc_to_choice": "{{choices}}",
      "process_results": "def process_results_mcqa(doc, results):\n    results = [result[0] for result in results]\n\n    gold = doc[\"gold\"]\n\n    acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n    completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n    acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n    return {\n        \"acc\": acc,\n        \"acc_norm\": acc_norm,\n    }\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "agieval_lsat_rc": {
      "task": "agieval_lsat_rc",
      "dataset_path": "hails/agieval-lsat-rc",
      "test_split": "test",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{gold}}",
      "doc_to_choice": "{{choices}}",
      "process_results": "def process_results_mcqa(doc, results):\n    results = [result[0] for result in results]\n\n    gold = doc[\"gold\"]\n\n    acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n    completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n    acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n    return {\n        \"acc\": acc,\n        \"acc_norm\": acc_norm,\n    }\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "agieval_math": {
      "task": "agieval_math",
      "dataset_path": "hails/agieval-math",
      "test_split": "test",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{answer}}",
      "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n    candidate = results[0]\n\n    gold = doc[\"answer\"]\n\n    if not gold:\n        print(doc, candidate, gold)\n    if is_equiv(candidate, gold):\n        retval = 1\n    else:\n        retval = 0\n\n    results = {\n        \"acc\": retval,\n    }\n    return results\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "max_gen_toks": 32,
        "do_sample": false,
        "temperature": 0.0,
        "until": [
          "Q:"
        ]
      },
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "agieval_sat_en": {
      "task": "agieval_sat_en",
      "dataset_path": "hails/agieval-sat-en",
      "test_split": "test",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{gold}}",
      "doc_to_choice": "{{choices}}",
      "process_results": "def process_results_mcqa(doc, results):\n    results = [result[0] for result in results]\n\n    gold = doc[\"gold\"]\n\n    acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n    completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n    acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n    return {\n        \"acc\": acc,\n        \"acc_norm\": acc_norm,\n    }\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "agieval_sat_en_without_passage": {
      "task": "agieval_sat_en_without_passage",
      "dataset_path": "hails/agieval-sat-en-without-passage",
      "test_split": "test",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{gold}}",
      "doc_to_choice": "{{choices}}",
      "process_results": "def process_results_mcqa(doc, results):\n    results = [result[0] for result in results]\n\n    gold = doc[\"gold\"]\n\n    acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n    completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n    acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n    return {\n        \"acc\": acc,\n        \"acc_norm\": acc_norm,\n    }\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "agieval_sat_math": {
      "task": "agieval_sat_math",
      "dataset_path": "hails/agieval-sat-math",
      "test_split": "test",
      "doc_to_text": "{{query}}",
      "doc_to_target": "{{gold}}",
      "doc_to_choice": "{{choices}}",
      "process_results": "def process_results_mcqa(doc, results):\n    results = [result[0] for result in results]\n\n    gold = doc[\"gold\"]\n\n    acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n    completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n    acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n    return {\n        \"acc\": acc,\n        \"acc_norm\": acc_norm,\n    }\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    }
  },
  "versions": {
    "agieval": 0.0,
    "agieval_aqua_rat": 1.0,
    "agieval_gaokao_biology": 1.0,
    "agieval_gaokao_chemistry": 1.0,
    "agieval_gaokao_chinese": 1.0,
    "agieval_gaokao_english": 1.0,
    "agieval_gaokao_geography": 1.0,
    "agieval_gaokao_history": 1.0,
    "agieval_gaokao_mathcloze": 1.0,
    "agieval_gaokao_mathqa": 1.0,
    "agieval_gaokao_physics": 1.0,
    "agieval_jec_qa_ca": 1.0,
    "agieval_jec_qa_kd": 1.0,
    "agieval_logiqa_en": 1.0,
    "agieval_logiqa_zh": 1.0,
    "agieval_lsat_ar": 1.0,
    "agieval_lsat_lr": 1.0,
    "agieval_lsat_rc": 1.0,
    "agieval_math": 1.0,
    "agieval_sat_en": 1.0,
    "agieval_sat_en_without_passage": 1.0,
    "agieval_sat_math": 1.0
  },
  "n-shot": {
    "agieval_aqua_rat": 0,
    "agieval_gaokao_biology": 0,
    "agieval_gaokao_chemistry": 0,
    "agieval_gaokao_chinese": 0,
    "agieval_gaokao_english": 0,
    "agieval_gaokao_geography": 0,
    "agieval_gaokao_history": 0,
    "agieval_gaokao_mathcloze": 0,
    "agieval_gaokao_mathqa": 0,
    "agieval_gaokao_physics": 0,
    "agieval_jec_qa_ca": 0,
    "agieval_jec_qa_kd": 0,
    "agieval_logiqa_en": 0,
    "agieval_logiqa_zh": 0,
    "agieval_lsat_ar": 0,
    "agieval_lsat_lr": 0,
    "agieval_lsat_rc": 0,
    "agieval_math": 0,
    "agieval_sat_en": 0,
    "agieval_sat_en_without_passage": 0,
    "agieval_sat_math": 0
  },
  "higher_is_better": {
    "agieval": {
      "acc": true,
      "acc_norm": true
    },
    "agieval_aqua_rat": {
      "acc": true,
      "acc_norm": true
    },
    "agieval_gaokao_biology": {
      "acc": true,
      "acc_norm": true
    },
    "agieval_gaokao_chemistry": {
      "acc": true,
      "acc_norm": true
    },
    "agieval_gaokao_chinese": {
      "acc": true,
      "acc_norm": true
    },
    "agieval_gaokao_english": {
      "acc": true,
      "acc_norm": true
    },
    "agieval_gaokao_geography": {
      "acc": true,
      "acc_norm": true
    },
    "agieval_gaokao_history": {
      "acc": true,
      "acc_norm": true
    },
    "agieval_gaokao_mathcloze": {
      "acc": true
    },
    "agieval_gaokao_mathqa": {
      "acc": true,
      "acc_norm": true
    },
    "agieval_gaokao_physics": {
      "acc": true,
      "acc_norm": true
    },
    "agieval_jec_qa_ca": {
      "acc": true,
      "acc_norm": true
    },
    "agieval_jec_qa_kd": {
      "acc": true,
      "acc_norm": true
    },
    "agieval_logiqa_en": {
      "acc": true,
      "acc_norm": true
    },
    "agieval_logiqa_zh": {
      "acc": true,
      "acc_norm": true
    },
    "agieval_lsat_ar": {
      "acc": true,
      "acc_norm": true
    },
    "agieval_lsat_lr": {
      "acc": true,
      "acc_norm": true
    },
    "agieval_lsat_rc": {
      "acc": true,
      "acc_norm": true
    },
    "agieval_math": {
      "acc": true
    },
    "agieval_sat_en": {
      "acc": true,
      "acc_norm": true
    },
    "agieval_sat_en_without_passage": {
      "acc": true,
      "acc_norm": true
    },
    "agieval_sat_math": {
      "acc": true,
      "acc_norm": true
    }
  },
  "n-samples": {
    "agieval_gaokao_biology": {
      "original": 210,
      "effective": 210
    },
    "agieval_gaokao_chemistry": {
      "original": 207,
      "effective": 207
    },
    "agieval_gaokao_chinese": {
      "original": 246,
      "effective": 246
    },
    "agieval_gaokao_geography": {
      "original": 199,
      "effective": 199
    },
    "agieval_gaokao_history": {
      "original": 235,
      "effective": 235
    },
    "agieval_gaokao_mathcloze": {
      "original": 118,
      "effective": 118
    },
    "agieval_gaokao_mathqa": {
      "original": 351,
      "effective": 351
    },
    "agieval_gaokao_physics": {
      "original": 200,
      "effective": 200
    },
    "agieval_jec_qa_ca": {
      "original": 999,
      "effective": 999
    },
    "agieval_jec_qa_kd": {
      "original": 1000,
      "effective": 1000
    },
    "agieval_logiqa_zh": {
      "original": 651,
      "effective": 651
    },
    "agieval_aqua_rat": {
      "original": 254,
      "effective": 254
    },
    "agieval_gaokao_english": {
      "original": 306,
      "effective": 306
    },
    "agieval_logiqa_en": {
      "original": 651,
      "effective": 651
    },
    "agieval_lsat_ar": {
      "original": 230,
      "effective": 230
    },
    "agieval_lsat_lr": {
      "original": 510,
      "effective": 510
    },
    "agieval_lsat_rc": {
      "original": 269,
      "effective": 269
    },
    "agieval_math": {
      "original": 1000,
      "effective": 1000
    },
    "agieval_sat_en_without_passage": {
      "original": 206,
      "effective": 206
    },
    "agieval_sat_en": {
      "original": 206,
      "effective": 206
    },
    "agieval_sat_math": {
      "original": 220,
      "effective": 220
    }
  },
  "config": {
    "model": "vllm",
    "model_args": "pretrained=meta-llama/Llama-3.3-70B-Instruct,tensor_parallel_size=4,data_parallel_size=2,gpu_memory_utilization=0.9,download_dir=/tmp,enforce_eager=True",
    "batch_size": 1,
    "batch_sizes": [],
    "device": null,
    "use_cache": null,
    "limit": null,
    "bootstrap_iters": 100000,
    "gen_kwargs": null,
    "random_seed": 0,
    "numpy_seed": 1234,
    "torch_seed": 1234,
    "fewshot_seed": 1234
  },
  "git_hash": "150ae04f",
  "date": 1737578738.814069,
  "pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture:                       x86_64\nCPU op-mode(s):                     32-bit, 64-bit\nAddress sizes:                      48 bits physical, 48 bits virtual\nByte Order:                         Little Endian\nCPU(s):                             96\nOn-line CPU(s) list:                0-95\nVendor ID:                          AuthenticAMD\nModel name:                         AMD EPYC 7V12 64-Core Processor\nCPU family:                         23\nModel:                              49\nThread(s) per core:                 1\nCore(s) per socket:                 48\nSocket(s):                          2\nStepping:                           0\nBogoMIPS:                           4890.87\nFlags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor:                  Microsoft\nVirtualization type:                full\nL1d cache:                          3 MiB (96 instances)\nL1i cache:                          3 MiB (96 instances)\nL2 cache:                           48 MiB (96 instances)\nL3 cache:                           384 MiB (24 instances)\nNUMA node(s):                       4\nNUMA node0 CPU(s):                  0-23\nNUMA node1 CPU(s):                  24-47\nNUMA node2 CPU(s):                  48-71\nNUMA node3 CPU(s):                  72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit:        Not affected\nVulnerability L1tf:                 Not affected\nVulnerability Mds:                  Not affected\nVulnerability Meltdown:             Not affected\nVulnerability Mmio stale data:      Not affected\nVulnerability Retbleed:             Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2:           Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds:                Not affected\nVulnerability Tsx async abort:      Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
  "transformers_version": "4.48.1",
  "upper_git_hash": "086919bd66f4e15fdcd4b792a7b27a698c1ba091",
  "tokenizer_pad_token": [
    "<|finetune_right_pad_id|>",
    "128004"
  ],
  "tokenizer_eos_token": [
    "<|eot_id|>",
    "128009"
  ],
  "tokenizer_bos_token": [
    "<|begin_of_text|>",
    "128000"
  ],
  "eot_token_id": 128009,
  "max_length": 131072,
  "task_hashes": {},
  "model_source": "vllm",
  "model_name": "meta-llama/Llama-3.3-70B-Instruct",
  "model_name_sanitized": "meta-llama__Llama-3.3-70B-Instruct",
  "system_instruction": null,
  "system_instruction_sha": null,
  "fewshot_as_multiturn": false,
  "chat_template": null,
  "chat_template_sha": null,
  "start_time": 120759.780132137,
  "end_time": 122538.423654986,
  "total_evaluation_time_seconds": "1778.6435228490009"
}