{ "results": { "mmlu_pro": { "exact_match,custom-extract": 0.4747340425531915, "exact_match_stderr,custom-extract": 0.004428757017117927, "alias": "mmlu_pro" }, "mmlu_pro_biology": { "alias": " - biology", "exact_match,custom-extract": 0.700139470013947, "exact_match_stderr,custom-extract": 0.017123613695979267 }, "mmlu_pro_business": { "alias": " - business", "exact_match,custom-extract": 0.49429657794676807, "exact_match_stderr,custom-extract": 0.017810603660812285 }, "mmlu_pro_chemistry": { "alias": " - chemistry", "exact_match,custom-extract": 0.33568904593639576, "exact_match_stderr,custom-extract": 0.014041806669685108 }, "mmlu_pro_computer_science": { "alias": " - computer_science", "exact_match,custom-extract": 0.5414634146341464, "exact_match_stderr,custom-extract": 0.024638252468695724 }, "mmlu_pro_economics": { "alias": " - economics", "exact_match,custom-extract": 0.6030805687203792, "exact_match_stderr,custom-extract": 0.016850976027020036 }, "mmlu_pro_engineering": { "alias": " - engineering", "exact_match,custom-extract": 0.33436532507739936, "exact_match_stderr,custom-extract": 0.015163201516522406 }, "mmlu_pro_health": { "alias": " - health", "exact_match,custom-extract": 0.5537897310513448, "exact_match_stderr,custom-extract": 0.017391266144447512 }, "mmlu_pro_history": { "alias": " - history", "exact_match,custom-extract": 0.5065616797900262, "exact_match_stderr,custom-extract": 0.025647249999209133 }, "mmlu_pro_law": { "alias": " - law", "exact_match,custom-extract": 0.3024523160762943, "exact_match_stderr,custom-extract": 0.013849020726009176 }, "mmlu_pro_math": { "alias": " - math", "exact_match,custom-extract": 0.4722427831236121, "exact_match_stderr,custom-extract": 0.013587290818486789 }, "mmlu_pro_other": { "alias": " - other", "exact_match,custom-extract": 0.5422077922077922, "exact_match_stderr,custom-extract": 0.0163989569164936 }, "mmlu_pro_philosophy": { "alias": " - philosophy", "exact_match,custom-extract": 0.4969939879759519, "exact_match_stderr,custom-extract": 0.022405130826057537 }, "mmlu_pro_physics": { "alias": " - physics", "exact_match,custom-extract": 0.39568899153194764, "exact_match_stderr,custom-extract": 0.01357281377947953 }, "mmlu_pro_psychology": { "alias": " - psychology", "exact_match,custom-extract": 0.6328320802005013, "exact_match_stderr,custom-extract": 0.01707447846620369 } }, "groups": { "mmlu_pro": { "exact_match,custom-extract": 0.4747340425531915, "exact_match_stderr,custom-extract": 0.004428757017117927, "alias": "mmlu_pro" } }, "group_subtasks": { "mmlu_pro": [ "mmlu_pro_biology", "mmlu_pro_business", "mmlu_pro_chemistry", "mmlu_pro_computer_science", "mmlu_pro_economics", "mmlu_pro_engineering", "mmlu_pro_health", "mmlu_pro_history", "mmlu_pro_law", "mmlu_pro_math", "mmlu_pro_other", "mmlu_pro_philosophy", "mmlu_pro_physics", "mmlu_pro_psychology" ] }, "configs": { "mmlu_pro_biology": { "task": "mmlu_pro_biology", "task_alias": "biology", "dataset_path": "TIGER-Lab/MMLU-Pro", "test_split": "test", "fewshot_split": "validation", "process_docs": "functools.partial(<function process_docs at 0x14a8d80232e0>, subject='biology')", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a899d2c040>, including_answer=False)", "doc_to_target": "answer", "description": "The following are multiple choice questions (with answers) about biology. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a899d2c0d0>, including_answer=True)", "doc_to_target": "" }, "num_fewshot": 5, "metric_list": [ { "metric": "exact_match", "aggregation": "mean", "higher_is_better": true, "ignore_case": true, "ignore_punctuation": true } ], "output_type": "generate_until", "generation_kwargs": { "until": [ "</s>", "Q:", "<|im_end|>" ], "do_sample": false, "temperature": 0.0 }, "repeats": 1, "filter_list": [ { "name": "custom-extract", "filter": [ { "function": "regex", "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" }, { "function": "take_first" } ] } ], "should_decontaminate": false, "metadata": { "version": 1.0 } }, "mmlu_pro_business": { "task": "mmlu_pro_business", "task_alias": "business", "dataset_path": "TIGER-Lab/MMLU-Pro", "test_split": "test", "fewshot_split": "validation", "process_docs": "functools.partial(<function process_docs at 0x14a8d80c71c0>, subject='business')", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c5750>, including_answer=False)", "doc_to_target": "answer", "description": "The following are multiple choice questions (with answers) about business. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c5f30>, including_answer=True)", "doc_to_target": "" }, "num_fewshot": 5, "metric_list": [ { "metric": "exact_match", "aggregation": "mean", "higher_is_better": true, "ignore_case": true, "ignore_punctuation": true } ], "output_type": "generate_until", "generation_kwargs": { "until": [ "</s>", "Q:", "<|im_end|>" ], "do_sample": false, "temperature": 0.0 }, "repeats": 1, "filter_list": [ { "name": "custom-extract", "filter": [ { "function": "regex", "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" }, { "function": "take_first" } ] } ], "should_decontaminate": false, "metadata": { "version": 1.0 } }, "mmlu_pro_chemistry": { "task": "mmlu_pro_chemistry", "task_alias": "chemistry", "dataset_path": "TIGER-Lab/MMLU-Pro", "test_split": "test", "fewshot_split": "validation", "process_docs": "functools.partial(<function process_docs at 0x14a8d80c4d30>, subject='chemistry')", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c4700>, including_answer=False)", "doc_to_target": "answer", "description": "The following are multiple choice questions (with answers) about chemistry. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c5360>, including_answer=True)", "doc_to_target": "" }, "num_fewshot": 5, "metric_list": [ { "metric": "exact_match", "aggregation": "mean", "higher_is_better": true, "ignore_case": true, "ignore_punctuation": true } ], "output_type": "generate_until", "generation_kwargs": { "until": [ "</s>", "Q:", "<|im_end|>" ], "do_sample": false, "temperature": 0.0 }, "repeats": 1, "filter_list": [ { "name": "custom-extract", "filter": [ { "function": "regex", "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" }, { "function": "take_first" } ] } ], "should_decontaminate": false, "metadata": { "version": 1.0 } }, "mmlu_pro_computer_science": { "task": "mmlu_pro_computer_science", "task_alias": "computer_science", "dataset_path": "TIGER-Lab/MMLU-Pro", "test_split": "test", "fewshot_split": "validation", "process_docs": "functools.partial(<function process_docs at 0x14a8d80c5fc0>, subject='computer science')", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c6560>, including_answer=False)", "doc_to_target": "answer", "description": "The following are multiple choice questions (with answers) about computer science. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c6b00>, including_answer=True)", "doc_to_target": "" }, "num_fewshot": 5, "metric_list": [ { "metric": "exact_match", "aggregation": "mean", "higher_is_better": true, "ignore_case": true, "ignore_punctuation": true } ], "output_type": "generate_until", "generation_kwargs": { "until": [ "</s>", "Q:", "<|im_end|>" ], "do_sample": false, "temperature": 0.0 }, "repeats": 1, "filter_list": [ { "name": "custom-extract", "filter": [ { "function": "regex", "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" }, { "function": "take_first" } ] } ], "should_decontaminate": false, "metadata": { "version": 1.0 } }, "mmlu_pro_economics": { "task": "mmlu_pro_economics", "task_alias": "economics", "dataset_path": "TIGER-Lab/MMLU-Pro", "test_split": "test", "fewshot_split": "validation", "process_docs": "functools.partial(<function process_docs at 0x14a8d80c63b0>, subject='economics')", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c6f80>, including_answer=False)", "doc_to_target": "answer", "description": "The following are multiple choice questions (with answers) about economics. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c5bd0>, including_answer=True)", "doc_to_target": "" }, "num_fewshot": 5, "metric_list": [ { "metric": "exact_match", "aggregation": "mean", "higher_is_better": true, "ignore_case": true, "ignore_punctuation": true } ], "output_type": "generate_until", "generation_kwargs": { "until": [ "</s>", "Q:", "<|im_end|>" ], "do_sample": false, "temperature": 0.0 }, "repeats": 1, "filter_list": [ { "name": "custom-extract", "filter": [ { "function": "regex", "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" }, { "function": "take_first" } ] } ], "should_decontaminate": false, "metadata": { "version": 1.0 } }, "mmlu_pro_engineering": { "task": "mmlu_pro_engineering", "task_alias": "engineering", "dataset_path": "TIGER-Lab/MMLU-Pro", "test_split": "test", "fewshot_split": "validation", "process_docs": "functools.partial(<function process_docs at 0x14a8d80c5ab0>, subject='engineering')", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c7eb0>, including_answer=False)", "doc_to_target": "answer", "description": "The following are multiple choice questions (with answers) about engineering. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c49d0>, including_answer=True)", "doc_to_target": "" }, "num_fewshot": 5, "metric_list": [ { "metric": "exact_match", "aggregation": "mean", "higher_is_better": true, "ignore_case": true, "ignore_punctuation": true } ], "output_type": "generate_until", "generation_kwargs": { "until": [ "</s>", "Q:", "<|im_end|>" ], "do_sample": false, "temperature": 0.0 }, "repeats": 1, "filter_list": [ { "name": "custom-extract", "filter": [ { "function": "regex", "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" }, { "function": "take_first" } ] } ], "should_decontaminate": false, "metadata": { "version": 1.0 } }, "mmlu_pro_health": { "task": "mmlu_pro_health", "task_alias": "health", "dataset_path": "TIGER-Lab/MMLU-Pro", "test_split": "test", "fewshot_split": "validation", "process_docs": "functools.partial(<function process_docs at 0x14a8d80c7130>, subject='health')", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c72e0>, including_answer=False)", "doc_to_target": "answer", "description": "The following are multiple choice questions (with answers) about health. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c6d40>, including_answer=True)", "doc_to_target": "" }, "num_fewshot": 5, "metric_list": [ { "metric": "exact_match", "aggregation": "mean", "higher_is_better": true, "ignore_case": true, "ignore_punctuation": true } ], "output_type": "generate_until", "generation_kwargs": { "until": [ "</s>", "Q:", "<|im_end|>" ], "do_sample": false, "temperature": 0.0 }, "repeats": 1, "filter_list": [ { "name": "custom-extract", "filter": [ { "function": "regex", "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" }, { "function": "take_first" } ] } ], "should_decontaminate": false, "metadata": { "version": 1.0 } }, "mmlu_pro_history": { "task": "mmlu_pro_history", "task_alias": "history", "dataset_path": "TIGER-Lab/MMLU-Pro", "test_split": "test", "fewshot_split": "validation", "process_docs": "functools.partial(<function process_docs at 0x14a8d80c5900>, subject='history')", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c48b0>, including_answer=False)", "doc_to_target": "answer", "description": "The following are multiple choice questions (with answers) about history. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c4ee0>, including_answer=True)", "doc_to_target": "" }, "num_fewshot": 5, "metric_list": [ { "metric": "exact_match", "aggregation": "mean", "higher_is_better": true, "ignore_case": true, "ignore_punctuation": true } ], "output_type": "generate_until", "generation_kwargs": { "until": [ "</s>", "Q:", "<|im_end|>" ], "do_sample": false, "temperature": 0.0 }, "repeats": 1, "filter_list": [ { "name": "custom-extract", "filter": [ { "function": "regex", "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" }, { "function": "take_first" } ] } ], "should_decontaminate": false, "metadata": { "version": 1.0 } }, "mmlu_pro_law": { "task": "mmlu_pro_law", "task_alias": "law", "dataset_path": "TIGER-Lab/MMLU-Pro", "test_split": "test", "fewshot_split": "validation", "process_docs": "functools.partial(<function process_docs at 0x14a8d80c6950>, subject='law')", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c4f70>, including_answer=False)", "doc_to_target": "answer", "description": "The following are multiple choice questions (with answers) about law. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c7250>, including_answer=True)", "doc_to_target": "" }, "num_fewshot": 5, "metric_list": [ { "metric": "exact_match", "aggregation": "mean", "higher_is_better": true, "ignore_case": true, "ignore_punctuation": true } ], "output_type": "generate_until", "generation_kwargs": { "until": [ "</s>", "Q:", "<|im_end|>" ], "do_sample": false, "temperature": 0.0 }, "repeats": 1, "filter_list": [ { "name": "custom-extract", "filter": [ { "function": "regex", "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" }, { "function": "take_first" } ] } ], "should_decontaminate": false, "metadata": { "version": 1.0 } }, "mmlu_pro_math": { "task": "mmlu_pro_math", "task_alias": "math", "dataset_path": "TIGER-Lab/MMLU-Pro", "test_split": "test", "fewshot_split": "validation", "process_docs": "functools.partial(<function process_docs at 0x14a8d80c6a70>, subject='math')", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c7640>, including_answer=False)", "doc_to_target": "answer", "description": "The following are multiple choice questions (with answers) about math. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c7520>, including_answer=True)", "doc_to_target": "" }, "num_fewshot": 5, "metric_list": [ { "metric": "exact_match", "aggregation": "mean", "higher_is_better": true, "ignore_case": true, "ignore_punctuation": true } ], "output_type": "generate_until", "generation_kwargs": { "until": [ "</s>", "Q:", "<|im_end|>" ], "do_sample": false, "temperature": 0.0 }, "repeats": 1, "filter_list": [ { "name": "custom-extract", "filter": [ { "function": "regex", "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" }, { "function": "take_first" } ] } ], "should_decontaminate": false, "metadata": { "version": 1.0 } }, "mmlu_pro_other": { "task": "mmlu_pro_other", "task_alias": "other", "dataset_path": "TIGER-Lab/MMLU-Pro", "test_split": "test", "fewshot_split": "validation", "process_docs": "functools.partial(<function process_docs at 0x14a8d807f880>, subject='other')", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d807f910>, including_answer=False)", "doc_to_target": "answer", "description": "The following are multiple choice questions (with answers) about other. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d807f5b0>, including_answer=True)", "doc_to_target": "" }, "num_fewshot": 5, "metric_list": [ { "metric": "exact_match", "aggregation": "mean", "higher_is_better": true, "ignore_case": true, "ignore_punctuation": true } ], "output_type": "generate_until", "generation_kwargs": { "until": [ "</s>", "Q:", "<|im_end|>" ], "do_sample": false, "temperature": 0.0 }, "repeats": 1, "filter_list": [ { "name": "custom-extract", "filter": [ { "function": "regex", "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" }, { "function": "take_first" } ] } ], "should_decontaminate": false, "metadata": { "version": 1.0 } }, "mmlu_pro_philosophy": { "task": "mmlu_pro_philosophy", "task_alias": "philosophy", "dataset_path": "TIGER-Lab/MMLU-Pro", "test_split": "test", "fewshot_split": "validation", "process_docs": "functools.partial(<function process_docs at 0x14a8d8023ac0>, subject='philosophy')", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80237f0>, including_answer=False)", "doc_to_target": "answer", "description": "The following are multiple choice questions (with answers) about philosophy. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80239a0>, including_answer=True)", "doc_to_target": "" }, "num_fewshot": 5, "metric_list": [ { "metric": "exact_match", "aggregation": "mean", "higher_is_better": true, "ignore_case": true, "ignore_punctuation": true } ], "output_type": "generate_until", "generation_kwargs": { "until": [ "</s>", "Q:", "<|im_end|>" ], "do_sample": false, "temperature": 0.0 }, "repeats": 1, "filter_list": [ { "name": "custom-extract", "filter": [ { "function": "regex", "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" }, { "function": "take_first" } ] } ], "should_decontaminate": false, "metadata": { "version": 1.0 } }, "mmlu_pro_physics": { "task": "mmlu_pro_physics", "task_alias": "physics", "dataset_path": "TIGER-Lab/MMLU-Pro", "test_split": "test", "fewshot_split": "validation", "process_docs": "functools.partial(<function process_docs at 0x14a8d807fc70>, subject='physics')", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d807fd90>, including_answer=False)", "doc_to_target": "answer", "description": "The following are multiple choice questions (with answers) about physics. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d807ff40>, including_answer=True)", "doc_to_target": "" }, "num_fewshot": 5, "metric_list": [ { "metric": "exact_match", "aggregation": "mean", "higher_is_better": true, "ignore_case": true, "ignore_punctuation": true } ], "output_type": "generate_until", "generation_kwargs": { "until": [ "</s>", "Q:", "<|im_end|>" ], "do_sample": false, "temperature": 0.0 }, "repeats": 1, "filter_list": [ { "name": "custom-extract", "filter": [ { "function": "regex", "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" }, { "function": "take_first" } ] } ], "should_decontaminate": false, "metadata": { "version": 1.0 } }, "mmlu_pro_psychology": { "task": "mmlu_pro_psychology", "task_alias": "psychology", "dataset_path": "TIGER-Lab/MMLU-Pro", "test_split": "test", "fewshot_split": "validation", "process_docs": "functools.partial(<function process_docs at 0x14a8ecf3b2e0>, subject='psychology')", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8ecf3b370>, including_answer=False)", "doc_to_target": "answer", "description": "The following are multiple choice questions (with answers) about psychology. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n", "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8ecf3b490>, including_answer=True)", "doc_to_target": "" }, "num_fewshot": 5, "metric_list": [ { "metric": "exact_match", "aggregation": "mean", "higher_is_better": true, "ignore_case": true, "ignore_punctuation": true } ], "output_type": "generate_until", "generation_kwargs": { "until": [ "</s>", "Q:", "<|im_end|>" ], "do_sample": false, "temperature": 0.0 }, "repeats": 1, "filter_list": [ { "name": "custom-extract", "filter": [ { "function": "regex", "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?" }, { "function": "take_first" } ] } ], "should_decontaminate": false, "metadata": { "version": 1.0 } } }, "versions": { "mmlu_pro": 2.0, "mmlu_pro_biology": 1.0, "mmlu_pro_business": 1.0, "mmlu_pro_chemistry": 1.0, "mmlu_pro_computer_science": 1.0, "mmlu_pro_economics": 1.0, "mmlu_pro_engineering": 1.0, "mmlu_pro_health": 1.0, "mmlu_pro_history": 1.0, "mmlu_pro_law": 1.0, "mmlu_pro_math": 1.0, "mmlu_pro_other": 1.0, "mmlu_pro_philosophy": 1.0, "mmlu_pro_physics": 1.0, "mmlu_pro_psychology": 1.0 }, "n-shot": { "mmlu_pro_biology": 5, "mmlu_pro_business": 5, "mmlu_pro_chemistry": 5, "mmlu_pro_computer_science": 5, "mmlu_pro_economics": 5, "mmlu_pro_engineering": 5, "mmlu_pro_health": 5, "mmlu_pro_history": 5, "mmlu_pro_law": 5, "mmlu_pro_math": 5, "mmlu_pro_other": 5, "mmlu_pro_philosophy": 5, "mmlu_pro_physics": 5, "mmlu_pro_psychology": 5 }, "higher_is_better": { "mmlu_pro": { "exact_match": true }, "mmlu_pro_biology": { "exact_match": true }, "mmlu_pro_business": { "exact_match": true }, "mmlu_pro_chemistry": { "exact_match": true }, "mmlu_pro_computer_science": { "exact_match": true }, "mmlu_pro_economics": { "exact_match": true }, "mmlu_pro_engineering": { "exact_match": true }, "mmlu_pro_health": { "exact_match": true }, "mmlu_pro_history": { "exact_match": true }, "mmlu_pro_law": { "exact_match": true }, "mmlu_pro_math": { "exact_match": true }, "mmlu_pro_other": { "exact_match": true }, "mmlu_pro_philosophy": { "exact_match": true }, "mmlu_pro_physics": { "exact_match": true }, "mmlu_pro_psychology": { "exact_match": true } }, "n-samples": { "mmlu_pro_biology": { "original": 717, "effective": 717 }, "mmlu_pro_business": { "original": 789, "effective": 789 }, "mmlu_pro_chemistry": { "original": 1132, "effective": 1132 }, "mmlu_pro_computer_science": { "original": 410, "effective": 410 }, "mmlu_pro_economics": { "original": 844, "effective": 844 }, "mmlu_pro_engineering": { "original": 969, "effective": 969 }, "mmlu_pro_health": { "original": 818, "effective": 818 }, "mmlu_pro_history": { "original": 381, "effective": 381 }, "mmlu_pro_law": { "original": 1101, "effective": 1101 }, "mmlu_pro_math": { "original": 1351, "effective": 1351 }, "mmlu_pro_other": { "original": 924, "effective": 924 }, "mmlu_pro_philosophy": { "original": 499, "effective": 499 }, "mmlu_pro_physics": { "original": 1299, "effective": 1299 }, "mmlu_pro_psychology": { "original": 798, "effective": 798 } }, "config": { "model": "hf", "model_args": "parallelize=False,pretrained=mistralai/Mistral-Small-Instruct-2409,trust_remote_code=True,mm=False", "model_num_parameters": 22247282688, "model_dtype": "torch.bfloat16", "model_revision": "main", "model_sha": "8012044390bdc1c6d8ab162f5416220f43bf517b", "batch_size": 1, "batch_sizes": [], "device": null, "use_cache": null, "limit": null, "bootstrap_iters": 100000, "gen_kwargs": null, "random_seed": 0, "numpy_seed": 1234, "torch_seed": 1234, "fewshot_seed": 1234 }, "git_hash": "3127d82f", "date": 1731256655.6490734, "pretty_env_info": "PyTorch version: 2.1.0a0+29c30b1\nIs debug build: False\nCUDA used to build PyTorch: 12.2\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.22.2\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.1.0a0+29c30b1\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.16.0a0\n[pip3] triton==2.0.0.dev20221202\n[conda] Could not collect", "transformers_version": "4.38.2", "upper_git_hash": null, "tokenizer_pad_token": [ "</s>", "2" ], "tokenizer_eos_token": [ "</s>", "2" ], "tokenizer_bos_token": [ "<s>", "1" ], "eot_token_id": 2, "max_length": 32768, "task_hashes": {}, "model_source": "hf", "model_name": "mistralai/Mistral-Small-Instruct-2409", "model_name_sanitized": "mistralai__Mistral-Small-Instruct-2409", "system_instruction": null, "system_instruction_sha": null, "fewshot_as_multiturn": false, "chat_template": null, "chat_template_sha": null, "start_time": 997.744980378, "end_time": 151828.006223749, "total_evaluation_time_seconds": "150830.261243371" }