{
  "results": {
    "mmlu_pro": {
      "exact_match,custom-extract": 0.4747340425531915,
      "exact_match_stderr,custom-extract": 0.004428757017117927,
      "alias": "mmlu_pro"
    },
    "mmlu_pro_biology": {
      "alias": " - biology",
      "exact_match,custom-extract": 0.700139470013947,
      "exact_match_stderr,custom-extract": 0.017123613695979267
    },
    "mmlu_pro_business": {
      "alias": " - business",
      "exact_match,custom-extract": 0.49429657794676807,
      "exact_match_stderr,custom-extract": 0.017810603660812285
    },
    "mmlu_pro_chemistry": {
      "alias": " - chemistry",
      "exact_match,custom-extract": 0.33568904593639576,
      "exact_match_stderr,custom-extract": 0.014041806669685108
    },
    "mmlu_pro_computer_science": {
      "alias": " - computer_science",
      "exact_match,custom-extract": 0.5414634146341464,
      "exact_match_stderr,custom-extract": 0.024638252468695724
    },
    "mmlu_pro_economics": {
      "alias": " - economics",
      "exact_match,custom-extract": 0.6030805687203792,
      "exact_match_stderr,custom-extract": 0.016850976027020036
    },
    "mmlu_pro_engineering": {
      "alias": " - engineering",
      "exact_match,custom-extract": 0.33436532507739936,
      "exact_match_stderr,custom-extract": 0.015163201516522406
    },
    "mmlu_pro_health": {
      "alias": " - health",
      "exact_match,custom-extract": 0.5537897310513448,
      "exact_match_stderr,custom-extract": 0.017391266144447512
    },
    "mmlu_pro_history": {
      "alias": " - history",
      "exact_match,custom-extract": 0.5065616797900262,
      "exact_match_stderr,custom-extract": 0.025647249999209133
    },
    "mmlu_pro_law": {
      "alias": " - law",
      "exact_match,custom-extract": 0.3024523160762943,
      "exact_match_stderr,custom-extract": 0.013849020726009176
    },
    "mmlu_pro_math": {
      "alias": " - math",
      "exact_match,custom-extract": 0.4722427831236121,
      "exact_match_stderr,custom-extract": 0.013587290818486789
    },
    "mmlu_pro_other": {
      "alias": " - other",
      "exact_match,custom-extract": 0.5422077922077922,
      "exact_match_stderr,custom-extract": 0.0163989569164936
    },
    "mmlu_pro_philosophy": {
      "alias": " - philosophy",
      "exact_match,custom-extract": 0.4969939879759519,
      "exact_match_stderr,custom-extract": 0.022405130826057537
    },
    "mmlu_pro_physics": {
      "alias": " - physics",
      "exact_match,custom-extract": 0.39568899153194764,
      "exact_match_stderr,custom-extract": 0.01357281377947953
    },
    "mmlu_pro_psychology": {
      "alias": " - psychology",
      "exact_match,custom-extract": 0.6328320802005013,
      "exact_match_stderr,custom-extract": 0.01707447846620369
    }
  },
  "groups": {
    "mmlu_pro": {
      "exact_match,custom-extract": 0.4747340425531915,
      "exact_match_stderr,custom-extract": 0.004428757017117927,
      "alias": "mmlu_pro"
    }
  },
  "group_subtasks": {
    "mmlu_pro": [
      "mmlu_pro_biology",
      "mmlu_pro_business",
      "mmlu_pro_chemistry",
      "mmlu_pro_computer_science",
      "mmlu_pro_economics",
      "mmlu_pro_engineering",
      "mmlu_pro_health",
      "mmlu_pro_history",
      "mmlu_pro_law",
      "mmlu_pro_math",
      "mmlu_pro_other",
      "mmlu_pro_philosophy",
      "mmlu_pro_physics",
      "mmlu_pro_psychology"
    ]
  },
  "configs": {
    "mmlu_pro_biology": {
      "task": "mmlu_pro_biology",
      "task_alias": "biology",
      "dataset_path": "TIGER-Lab/MMLU-Pro",
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "functools.partial(<function process_docs at 0x14a8d80232e0>, subject='biology')",
      "doc_to_text": "functools.partial(<function format_cot_example at 0x14a899d2c040>, including_answer=False)",
      "doc_to_target": "answer",
      "description": "The following are multiple choice questions (with answers) about biology. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "doc_to_text": "functools.partial(<function format_cot_example at 0x14a899d2c0d0>, including_answer=True)",
        "doc_to_target": ""
      },
      "num_fewshot": 5,
      "metric_list": [
        {
          "metric": "exact_match",
          "aggregation": "mean",
          "higher_is_better": true,
          "ignore_case": true,
          "ignore_punctuation": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [
          "</s>",
          "Q:",
          "<|im_end|>"
        ],
        "do_sample": false,
        "temperature": 0.0
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "custom-extract",
          "filter": [
            {
              "function": "regex",
              "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
            },
            {
              "function": "take_first"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_pro_business": {
      "task": "mmlu_pro_business",
      "task_alias": "business",
      "dataset_path": "TIGER-Lab/MMLU-Pro",
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "functools.partial(<function process_docs at 0x14a8d80c71c0>, subject='business')",
      "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c5750>, including_answer=False)",
      "doc_to_target": "answer",
      "description": "The following are multiple choice questions (with answers) about business. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c5f30>, including_answer=True)",
        "doc_to_target": ""
      },
      "num_fewshot": 5,
      "metric_list": [
        {
          "metric": "exact_match",
          "aggregation": "mean",
          "higher_is_better": true,
          "ignore_case": true,
          "ignore_punctuation": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [
          "</s>",
          "Q:",
          "<|im_end|>"
        ],
        "do_sample": false,
        "temperature": 0.0
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "custom-extract",
          "filter": [
            {
              "function": "regex",
              "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
            },
            {
              "function": "take_first"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_pro_chemistry": {
      "task": "mmlu_pro_chemistry",
      "task_alias": "chemistry",
      "dataset_path": "TIGER-Lab/MMLU-Pro",
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "functools.partial(<function process_docs at 0x14a8d80c4d30>, subject='chemistry')",
      "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c4700>, including_answer=False)",
      "doc_to_target": "answer",
      "description": "The following are multiple choice questions (with answers) about chemistry. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c5360>, including_answer=True)",
        "doc_to_target": ""
      },
      "num_fewshot": 5,
      "metric_list": [
        {
          "metric": "exact_match",
          "aggregation": "mean",
          "higher_is_better": true,
          "ignore_case": true,
          "ignore_punctuation": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [
          "</s>",
          "Q:",
          "<|im_end|>"
        ],
        "do_sample": false,
        "temperature": 0.0
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "custom-extract",
          "filter": [
            {
              "function": "regex",
              "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
            },
            {
              "function": "take_first"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_pro_computer_science": {
      "task": "mmlu_pro_computer_science",
      "task_alias": "computer_science",
      "dataset_path": "TIGER-Lab/MMLU-Pro",
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "functools.partial(<function process_docs at 0x14a8d80c5fc0>, subject='computer science')",
      "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c6560>, including_answer=False)",
      "doc_to_target": "answer",
      "description": "The following are multiple choice questions (with answers) about computer science. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c6b00>, including_answer=True)",
        "doc_to_target": ""
      },
      "num_fewshot": 5,
      "metric_list": [
        {
          "metric": "exact_match",
          "aggregation": "mean",
          "higher_is_better": true,
          "ignore_case": true,
          "ignore_punctuation": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [
          "</s>",
          "Q:",
          "<|im_end|>"
        ],
        "do_sample": false,
        "temperature": 0.0
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "custom-extract",
          "filter": [
            {
              "function": "regex",
              "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
            },
            {
              "function": "take_first"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_pro_economics": {
      "task": "mmlu_pro_economics",
      "task_alias": "economics",
      "dataset_path": "TIGER-Lab/MMLU-Pro",
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "functools.partial(<function process_docs at 0x14a8d80c63b0>, subject='economics')",
      "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c6f80>, including_answer=False)",
      "doc_to_target": "answer",
      "description": "The following are multiple choice questions (with answers) about economics. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c5bd0>, including_answer=True)",
        "doc_to_target": ""
      },
      "num_fewshot": 5,
      "metric_list": [
        {
          "metric": "exact_match",
          "aggregation": "mean",
          "higher_is_better": true,
          "ignore_case": true,
          "ignore_punctuation": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [
          "</s>",
          "Q:",
          "<|im_end|>"
        ],
        "do_sample": false,
        "temperature": 0.0
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "custom-extract",
          "filter": [
            {
              "function": "regex",
              "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
            },
            {
              "function": "take_first"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_pro_engineering": {
      "task": "mmlu_pro_engineering",
      "task_alias": "engineering",
      "dataset_path": "TIGER-Lab/MMLU-Pro",
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "functools.partial(<function process_docs at 0x14a8d80c5ab0>, subject='engineering')",
      "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c7eb0>, including_answer=False)",
      "doc_to_target": "answer",
      "description": "The following are multiple choice questions (with answers) about engineering. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c49d0>, including_answer=True)",
        "doc_to_target": ""
      },
      "num_fewshot": 5,
      "metric_list": [
        {
          "metric": "exact_match",
          "aggregation": "mean",
          "higher_is_better": true,
          "ignore_case": true,
          "ignore_punctuation": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [
          "</s>",
          "Q:",
          "<|im_end|>"
        ],
        "do_sample": false,
        "temperature": 0.0
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "custom-extract",
          "filter": [
            {
              "function": "regex",
              "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
            },
            {
              "function": "take_first"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_pro_health": {
      "task": "mmlu_pro_health",
      "task_alias": "health",
      "dataset_path": "TIGER-Lab/MMLU-Pro",
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "functools.partial(<function process_docs at 0x14a8d80c7130>, subject='health')",
      "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c72e0>, including_answer=False)",
      "doc_to_target": "answer",
      "description": "The following are multiple choice questions (with answers) about health. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c6d40>, including_answer=True)",
        "doc_to_target": ""
      },
      "num_fewshot": 5,
      "metric_list": [
        {
          "metric": "exact_match",
          "aggregation": "mean",
          "higher_is_better": true,
          "ignore_case": true,
          "ignore_punctuation": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [
          "</s>",
          "Q:",
          "<|im_end|>"
        ],
        "do_sample": false,
        "temperature": 0.0
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "custom-extract",
          "filter": [
            {
              "function": "regex",
              "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
            },
            {
              "function": "take_first"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_pro_history": {
      "task": "mmlu_pro_history",
      "task_alias": "history",
      "dataset_path": "TIGER-Lab/MMLU-Pro",
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "functools.partial(<function process_docs at 0x14a8d80c5900>, subject='history')",
      "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c48b0>, including_answer=False)",
      "doc_to_target": "answer",
      "description": "The following are multiple choice questions (with answers) about history. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c4ee0>, including_answer=True)",
        "doc_to_target": ""
      },
      "num_fewshot": 5,
      "metric_list": [
        {
          "metric": "exact_match",
          "aggregation": "mean",
          "higher_is_better": true,
          "ignore_case": true,
          "ignore_punctuation": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [
          "</s>",
          "Q:",
          "<|im_end|>"
        ],
        "do_sample": false,
        "temperature": 0.0
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "custom-extract",
          "filter": [
            {
              "function": "regex",
              "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
            },
            {
              "function": "take_first"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_pro_law": {
      "task": "mmlu_pro_law",
      "task_alias": "law",
      "dataset_path": "TIGER-Lab/MMLU-Pro",
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "functools.partial(<function process_docs at 0x14a8d80c6950>, subject='law')",
      "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c4f70>, including_answer=False)",
      "doc_to_target": "answer",
      "description": "The following are multiple choice questions (with answers) about law. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c7250>, including_answer=True)",
        "doc_to_target": ""
      },
      "num_fewshot": 5,
      "metric_list": [
        {
          "metric": "exact_match",
          "aggregation": "mean",
          "higher_is_better": true,
          "ignore_case": true,
          "ignore_punctuation": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [
          "</s>",
          "Q:",
          "<|im_end|>"
        ],
        "do_sample": false,
        "temperature": 0.0
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "custom-extract",
          "filter": [
            {
              "function": "regex",
              "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
            },
            {
              "function": "take_first"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_pro_math": {
      "task": "mmlu_pro_math",
      "task_alias": "math",
      "dataset_path": "TIGER-Lab/MMLU-Pro",
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "functools.partial(<function process_docs at 0x14a8d80c6a70>, subject='math')",
      "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c7640>, including_answer=False)",
      "doc_to_target": "answer",
      "description": "The following are multiple choice questions (with answers) about math. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80c7520>, including_answer=True)",
        "doc_to_target": ""
      },
      "num_fewshot": 5,
      "metric_list": [
        {
          "metric": "exact_match",
          "aggregation": "mean",
          "higher_is_better": true,
          "ignore_case": true,
          "ignore_punctuation": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [
          "</s>",
          "Q:",
          "<|im_end|>"
        ],
        "do_sample": false,
        "temperature": 0.0
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "custom-extract",
          "filter": [
            {
              "function": "regex",
              "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
            },
            {
              "function": "take_first"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_pro_other": {
      "task": "mmlu_pro_other",
      "task_alias": "other",
      "dataset_path": "TIGER-Lab/MMLU-Pro",
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "functools.partial(<function process_docs at 0x14a8d807f880>, subject='other')",
      "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d807f910>, including_answer=False)",
      "doc_to_target": "answer",
      "description": "The following are multiple choice questions (with answers) about other. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d807f5b0>, including_answer=True)",
        "doc_to_target": ""
      },
      "num_fewshot": 5,
      "metric_list": [
        {
          "metric": "exact_match",
          "aggregation": "mean",
          "higher_is_better": true,
          "ignore_case": true,
          "ignore_punctuation": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [
          "</s>",
          "Q:",
          "<|im_end|>"
        ],
        "do_sample": false,
        "temperature": 0.0
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "custom-extract",
          "filter": [
            {
              "function": "regex",
              "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
            },
            {
              "function": "take_first"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_pro_philosophy": {
      "task": "mmlu_pro_philosophy",
      "task_alias": "philosophy",
      "dataset_path": "TIGER-Lab/MMLU-Pro",
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "functools.partial(<function process_docs at 0x14a8d8023ac0>, subject='philosophy')",
      "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80237f0>, including_answer=False)",
      "doc_to_target": "answer",
      "description": "The following are multiple choice questions (with answers) about philosophy. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d80239a0>, including_answer=True)",
        "doc_to_target": ""
      },
      "num_fewshot": 5,
      "metric_list": [
        {
          "metric": "exact_match",
          "aggregation": "mean",
          "higher_is_better": true,
          "ignore_case": true,
          "ignore_punctuation": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [
          "</s>",
          "Q:",
          "<|im_end|>"
        ],
        "do_sample": false,
        "temperature": 0.0
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "custom-extract",
          "filter": [
            {
              "function": "regex",
              "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
            },
            {
              "function": "take_first"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_pro_physics": {
      "task": "mmlu_pro_physics",
      "task_alias": "physics",
      "dataset_path": "TIGER-Lab/MMLU-Pro",
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "functools.partial(<function process_docs at 0x14a8d807fc70>, subject='physics')",
      "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d807fd90>, including_answer=False)",
      "doc_to_target": "answer",
      "description": "The following are multiple choice questions (with answers) about physics. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8d807ff40>, including_answer=True)",
        "doc_to_target": ""
      },
      "num_fewshot": 5,
      "metric_list": [
        {
          "metric": "exact_match",
          "aggregation": "mean",
          "higher_is_better": true,
          "ignore_case": true,
          "ignore_punctuation": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [
          "</s>",
          "Q:",
          "<|im_end|>"
        ],
        "do_sample": false,
        "temperature": 0.0
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "custom-extract",
          "filter": [
            {
              "function": "regex",
              "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
            },
            {
              "function": "take_first"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_pro_psychology": {
      "task": "mmlu_pro_psychology",
      "task_alias": "psychology",
      "dataset_path": "TIGER-Lab/MMLU-Pro",
      "test_split": "test",
      "fewshot_split": "validation",
      "process_docs": "functools.partial(<function process_docs at 0x14a8ecf3b2e0>, subject='psychology')",
      "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8ecf3b370>, including_answer=False)",
      "doc_to_target": "answer",
      "description": "The following are multiple choice questions (with answers) about psychology. Think step by step and then finish your answer with \"the answer is (X)\" where X is the correct letter choice.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "doc_to_text": "functools.partial(<function format_cot_example at 0x14a8ecf3b490>, including_answer=True)",
        "doc_to_target": ""
      },
      "num_fewshot": 5,
      "metric_list": [
        {
          "metric": "exact_match",
          "aggregation": "mean",
          "higher_is_better": true,
          "ignore_case": true,
          "ignore_punctuation": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [
          "</s>",
          "Q:",
          "<|im_end|>"
        ],
        "do_sample": false,
        "temperature": 0.0
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "custom-extract",
          "filter": [
            {
              "function": "regex",
              "regex_pattern": "answer is \\(?([ABCDEFGHIJ])\\)?"
            },
            {
              "function": "take_first"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    }
  },
  "versions": {
    "mmlu_pro": 2.0,
    "mmlu_pro_biology": 1.0,
    "mmlu_pro_business": 1.0,
    "mmlu_pro_chemistry": 1.0,
    "mmlu_pro_computer_science": 1.0,
    "mmlu_pro_economics": 1.0,
    "mmlu_pro_engineering": 1.0,
    "mmlu_pro_health": 1.0,
    "mmlu_pro_history": 1.0,
    "mmlu_pro_law": 1.0,
    "mmlu_pro_math": 1.0,
    "mmlu_pro_other": 1.0,
    "mmlu_pro_philosophy": 1.0,
    "mmlu_pro_physics": 1.0,
    "mmlu_pro_psychology": 1.0
  },
  "n-shot": {
    "mmlu_pro_biology": 5,
    "mmlu_pro_business": 5,
    "mmlu_pro_chemistry": 5,
    "mmlu_pro_computer_science": 5,
    "mmlu_pro_economics": 5,
    "mmlu_pro_engineering": 5,
    "mmlu_pro_health": 5,
    "mmlu_pro_history": 5,
    "mmlu_pro_law": 5,
    "mmlu_pro_math": 5,
    "mmlu_pro_other": 5,
    "mmlu_pro_philosophy": 5,
    "mmlu_pro_physics": 5,
    "mmlu_pro_psychology": 5
  },
  "higher_is_better": {
    "mmlu_pro": {
      "exact_match": true
    },
    "mmlu_pro_biology": {
      "exact_match": true
    },
    "mmlu_pro_business": {
      "exact_match": true
    },
    "mmlu_pro_chemistry": {
      "exact_match": true
    },
    "mmlu_pro_computer_science": {
      "exact_match": true
    },
    "mmlu_pro_economics": {
      "exact_match": true
    },
    "mmlu_pro_engineering": {
      "exact_match": true
    },
    "mmlu_pro_health": {
      "exact_match": true
    },
    "mmlu_pro_history": {
      "exact_match": true
    },
    "mmlu_pro_law": {
      "exact_match": true
    },
    "mmlu_pro_math": {
      "exact_match": true
    },
    "mmlu_pro_other": {
      "exact_match": true
    },
    "mmlu_pro_philosophy": {
      "exact_match": true
    },
    "mmlu_pro_physics": {
      "exact_match": true
    },
    "mmlu_pro_psychology": {
      "exact_match": true
    }
  },
  "n-samples": {
    "mmlu_pro_biology": {
      "original": 717,
      "effective": 717
    },
    "mmlu_pro_business": {
      "original": 789,
      "effective": 789
    },
    "mmlu_pro_chemistry": {
      "original": 1132,
      "effective": 1132
    },
    "mmlu_pro_computer_science": {
      "original": 410,
      "effective": 410
    },
    "mmlu_pro_economics": {
      "original": 844,
      "effective": 844
    },
    "mmlu_pro_engineering": {
      "original": 969,
      "effective": 969
    },
    "mmlu_pro_health": {
      "original": 818,
      "effective": 818
    },
    "mmlu_pro_history": {
      "original": 381,
      "effective": 381
    },
    "mmlu_pro_law": {
      "original": 1101,
      "effective": 1101
    },
    "mmlu_pro_math": {
      "original": 1351,
      "effective": 1351
    },
    "mmlu_pro_other": {
      "original": 924,
      "effective": 924
    },
    "mmlu_pro_philosophy": {
      "original": 499,
      "effective": 499
    },
    "mmlu_pro_physics": {
      "original": 1299,
      "effective": 1299
    },
    "mmlu_pro_psychology": {
      "original": 798,
      "effective": 798
    }
  },
  "config": {
    "model": "hf",
    "model_args": "parallelize=False,pretrained=mistralai/Mistral-Small-Instruct-2409,trust_remote_code=True,mm=False",
    "model_num_parameters": 22247282688,
    "model_dtype": "torch.bfloat16",
    "model_revision": "main",
    "model_sha": "8012044390bdc1c6d8ab162f5416220f43bf517b",
    "batch_size": 1,
    "batch_sizes": [],
    "device": null,
    "use_cache": null,
    "limit": null,
    "bootstrap_iters": 100000,
    "gen_kwargs": null,
    "random_seed": 0,
    "numpy_seed": 1234,
    "torch_seed": 1234,
    "fewshot_seed": 1234
  },
  "git_hash": "3127d82f",
  "date": 1731256655.6490734,
  "pretty_env_info": "PyTorch version: 2.1.0a0+29c30b1\nIs debug build: False\nCUDA used to build PyTorch: 12.2\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture:                       x86_64\nCPU op-mode(s):                     32-bit, 64-bit\nAddress sizes:                      48 bits physical, 48 bits virtual\nByte Order:                         Little Endian\nCPU(s):                             96\nOn-line CPU(s) list:                0-95\nVendor ID:                          AuthenticAMD\nModel name:                         AMD EPYC 7V12 64-Core Processor\nCPU family:                         23\nModel:                              49\nThread(s) per core:                 1\nCore(s) per socket:                 48\nSocket(s):                          2\nStepping:                           0\nBogoMIPS:                           4890.87\nFlags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor:                  Microsoft\nVirtualization type:                full\nL1d cache:                          3 MiB (96 instances)\nL1i cache:                          3 MiB (96 instances)\nL2 cache:                           48 MiB (96 instances)\nL3 cache:                           384 MiB (24 instances)\nNUMA node(s):                       4\nNUMA node0 CPU(s):                  0-23\nNUMA node1 CPU(s):                  24-47\nNUMA node2 CPU(s):                  48-71\nNUMA node3 CPU(s):                  72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit:        Not affected\nVulnerability L1tf:                 Not affected\nVulnerability Mds:                  Not affected\nVulnerability Meltdown:             Not affected\nVulnerability Mmio stale data:      Not affected\nVulnerability Retbleed:             Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2:           Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds:                Not affected\nVulnerability Tsx async abort:      Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.22.2\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.1.0a0+29c30b1\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.16.0a0\n[pip3] triton==2.0.0.dev20221202\n[conda] Could not collect",
  "transformers_version": "4.38.2",
  "upper_git_hash": null,
  "tokenizer_pad_token": [
    "</s>",
    "2"
  ],
  "tokenizer_eos_token": [
    "</s>",
    "2"
  ],
  "tokenizer_bos_token": [
    "<s>",
    "1"
  ],
  "eot_token_id": 2,
  "max_length": 32768,
  "task_hashes": {},
  "model_source": "hf",
  "model_name": "mistralai/Mistral-Small-Instruct-2409",
  "model_name_sanitized": "mistralai__Mistral-Small-Instruct-2409",
  "system_instruction": null,
  "system_instruction_sha": null,
  "fewshot_as_multiturn": false,
  "chat_template": null,
  "chat_template_sha": null,
  "start_time": 997.744980378,
  "end_time": 151828.006223749,
  "total_evaluation_time_seconds": "150830.261243371"
}