{
  "results": {
    "mmlu": {
      "acc,none": 0.7893462469733656,
      "acc_stderr,none": 0.0032972614303645293,
      "alias": "mmlu"
    },
    "mmlu_humanities": {
      "acc,none": 0.7330499468650372,
      "acc_stderr,none": 0.006167732304660011,
      "alias": " - humanities"
    },
    "mmlu_formal_logic": {
      "alias": "  - formal_logic",
      "acc,none": 0.6349206349206349,
      "acc_stderr,none": 0.04306241259127153
    },
    "mmlu_high_school_european_history": {
      "alias": "  - high_school_european_history",
      "acc,none": 0.8484848484848485,
      "acc_stderr,none": 0.027998073798781657
    },
    "mmlu_high_school_us_history": {
      "alias": "  - high_school_us_history",
      "acc,none": 0.9215686274509803,
      "acc_stderr,none": 0.01886951464665892
    },
    "mmlu_high_school_world_history": {
      "alias": "  - high_school_world_history",
      "acc,none": 0.9071729957805907,
      "acc_stderr,none": 0.018889750550956718
    },
    "mmlu_international_law": {
      "alias": "  - international_law",
      "acc,none": 0.8842975206611571,
      "acc_stderr,none": 0.029199802455622793
    },
    "mmlu_jurisprudence": {
      "alias": "  - jurisprudence",
      "acc,none": 0.8703703703703703,
      "acc_stderr,none": 0.0324722438991795
    },
    "mmlu_logical_fallacies": {
      "alias": "  - logical_fallacies",
      "acc,none": 0.8957055214723927,
      "acc_stderr,none": 0.024013517319439067
    },
    "mmlu_moral_disputes": {
      "alias": "  - moral_disputes",
      "acc,none": 0.815028901734104,
      "acc_stderr,none": 0.020903975842083033
    },
    "mmlu_moral_scenarios": {
      "alias": "  - moral_scenarios",
      "acc,none": 0.6804469273743017,
      "acc_stderr,none": 0.015595520294147416
    },
    "mmlu_philosophy": {
      "alias": "  - philosophy",
      "acc,none": 0.8102893890675241,
      "acc_stderr,none": 0.022268196258783218
    },
    "mmlu_prehistory": {
      "alias": "  - prehistory",
      "acc,none": 0.8888888888888888,
      "acc_stderr,none": 0.0174864327858807
    },
    "mmlu_professional_law": {
      "alias": "  - professional_law",
      "acc,none": 0.5827900912646675,
      "acc_stderr,none": 0.012593959992906424
    },
    "mmlu_world_religions": {
      "alias": "  - world_religions",
      "acc,none": 0.9005847953216374,
      "acc_stderr,none": 0.022949025579355013
    },
    "mmlu_other": {
      "acc,none": 0.8181525587383328,
      "acc_stderr,none": 0.0066715060893313355,
      "alias": " - other"
    },
    "mmlu_business_ethics": {
      "alias": "  - business_ethics",
      "acc,none": 0.79,
      "acc_stderr,none": 0.040936018074033256
    },
    "mmlu_clinical_knowledge": {
      "alias": "  - clinical_knowledge",
      "acc,none": 0.8415094339622642,
      "acc_stderr,none": 0.0224765287101677
    },
    "mmlu_college_medicine": {
      "alias": "  - college_medicine",
      "acc,none": 0.7572254335260116,
      "acc_stderr,none": 0.0326926380614177
    },
    "mmlu_global_facts": {
      "alias": "  - global_facts",
      "acc,none": 0.63,
      "acc_stderr,none": 0.048523658709391
    },
    "mmlu_human_aging": {
      "alias": "  - human_aging",
      "acc,none": 0.7937219730941704,
      "acc_stderr,none": 0.027157150479563824
    },
    "mmlu_management": {
      "alias": "  - management",
      "acc,none": 0.8932038834951457,
      "acc_stderr,none": 0.030581088928331356
    },
    "mmlu_marketing": {
      "alias": "  - marketing",
      "acc,none": 0.9230769230769231,
      "acc_stderr,none": 0.01745698787243619
    },
    "mmlu_medical_genetics": {
      "alias": "  - medical_genetics",
      "acc,none": 0.88,
      "acc_stderr,none": 0.03265986323710906
    },
    "mmlu_miscellaneous": {
      "alias": "  - miscellaneous",
      "acc,none": 0.9080459770114943,
      "acc_stderr,none": 0.010333225570778516
    },
    "mmlu_nutrition": {
      "alias": "  - nutrition",
      "acc,none": 0.8431372549019608,
      "acc_stderr,none": 0.020823758837580888
    },
    "mmlu_professional_accounting": {
      "alias": "  - professional_accounting",
      "acc,none": 0.648936170212766,
      "acc_stderr,none": 0.028473501272963764
    },
    "mmlu_professional_medicine": {
      "alias": "  - professional_medicine",
      "acc,none": 0.8419117647058824,
      "acc_stderr,none": 0.022161462608068516
    },
    "mmlu_virology": {
      "alias": "  - virology",
      "acc,none": 0.5542168674698795,
      "acc_stderr,none": 0.03869543323472101
    },
    "mmlu_social_sciences": {
      "acc,none": 0.8657783555411115,
      "acc_stderr,none": 0.006066980585852004,
      "alias": " - social sciences"
    },
    "mmlu_econometrics": {
      "alias": "  - econometrics",
      "acc,none": 0.6842105263157895,
      "acc_stderr,none": 0.04372748290278008
    },
    "mmlu_high_school_geography": {
      "alias": "  - high_school_geography",
      "acc,none": 0.9191919191919192,
      "acc_stderr,none": 0.019417681889724536
    },
    "mmlu_high_school_government_and_politics": {
      "alias": "  - high_school_government_and_politics",
      "acc,none": 0.9637305699481865,
      "acc_stderr,none": 0.013492659751295126
    },
    "mmlu_high_school_macroeconomics": {
      "alias": "  - high_school_macroeconomics",
      "acc,none": 0.8487179487179487,
      "acc_stderr,none": 0.01816772698946879
    },
    "mmlu_high_school_microeconomics": {
      "alias": "  - high_school_microeconomics",
      "acc,none": 0.9243697478991597,
      "acc_stderr,none": 0.017174988814938508
    },
    "mmlu_high_school_psychology": {
      "alias": "  - high_school_psychology",
      "acc,none": 0.8972477064220183,
      "acc_stderr,none": 0.013018246509173746
    },
    "mmlu_human_sexuality": {
      "alias": "  - human_sexuality",
      "acc,none": 0.8702290076335878,
      "acc_stderr,none": 0.029473649496907065
    },
    "mmlu_professional_psychology": {
      "alias": "  - professional_psychology",
      "acc,none": 0.8186274509803921,
      "acc_stderr,none": 0.015588643495370428
    },
    "mmlu_public_relations": {
      "alias": "  - public_relations",
      "acc,none": 0.7818181818181819,
      "acc_stderr,none": 0.03955932861795833
    },
    "mmlu_security_studies": {
      "alias": "  - security_studies",
      "acc,none": 0.8408163265306122,
      "acc_stderr,none": 0.023420972069166362
    },
    "mmlu_sociology": {
      "alias": "  - sociology",
      "acc,none": 0.8855721393034826,
      "acc_stderr,none": 0.0225093453251017
    },
    "mmlu_us_foreign_policy": {
      "alias": "  - us_foreign_policy",
      "acc,none": 0.93,
      "acc_stderr,none": 0.02564323999762429
    },
    "mmlu_stem": {
      "acc,none": 0.7703774183317476,
      "acc_stderr,none": 0.007255670011633473,
      "alias": " - stem"
    },
    "mmlu_abstract_algebra": {
      "alias": "  - abstract_algebra",
      "acc,none": 0.66,
      "acc_stderr,none": 0.04760952285695237
    },
    "mmlu_anatomy": {
      "alias": "  - anatomy",
      "acc,none": 0.7703703703703704,
      "acc_stderr,none": 0.036333844140734636
    },
    "mmlu_astronomy": {
      "alias": "  - astronomy",
      "acc,none": 0.9144736842105263,
      "acc_stderr,none": 0.022758677130888604
    },
    "mmlu_college_biology": {
      "alias": "  - college_biology",
      "acc,none": 0.8958333333333334,
      "acc_stderr,none": 0.025545239210256906
    },
    "mmlu_college_chemistry": {
      "alias": "  - college_chemistry",
      "acc,none": 0.54,
      "acc_stderr,none": 0.05009082659620333
    },
    "mmlu_college_computer_science": {
      "alias": "  - college_computer_science",
      "acc,none": 0.71,
      "acc_stderr,none": 0.045604802157206845
    },
    "mmlu_college_mathematics": {
      "alias": "  - college_mathematics",
      "acc,none": 0.6,
      "acc_stderr,none": 0.04923659639173309
    },
    "mmlu_college_physics": {
      "alias": "  - college_physics",
      "acc,none": 0.6078431372549019,
      "acc_stderr,none": 0.048580835742663434
    },
    "mmlu_computer_security": {
      "alias": "  - computer_security",
      "acc,none": 0.81,
      "acc_stderr,none": 0.039427724440366234
    },
    "mmlu_conceptual_physics": {
      "alias": "  - conceptual_physics",
      "acc,none": 0.8297872340425532,
      "acc_stderr,none": 0.0245680965612607
    },
    "mmlu_electrical_engineering": {
      "alias": "  - electrical_engineering",
      "acc,none": 0.7586206896551724,
      "acc_stderr,none": 0.03565998174135303
    },
    "mmlu_elementary_mathematics": {
      "alias": "  - elementary_mathematics",
      "acc,none": 0.8650793650793651,
      "acc_stderr,none": 0.017595292443220667
    },
    "mmlu_high_school_biology": {
      "alias": "  - high_school_biology",
      "acc,none": 0.9,
      "acc_stderr,none": 0.017066403719657283
    },
    "mmlu_high_school_chemistry": {
      "alias": "  - high_school_chemistry",
      "acc,none": 0.7093596059113301,
      "acc_stderr,none": 0.0319474007226554
    },
    "mmlu_high_school_computer_science": {
      "alias": "  - high_school_computer_science",
      "acc,none": 0.89,
      "acc_stderr,none": 0.03144660377352203
    },
    "mmlu_high_school_mathematics": {
      "alias": "  - high_school_mathematics",
      "acc,none": 0.6259259259259259,
      "acc_stderr,none": 0.029502861128955286
    },
    "mmlu_high_school_physics": {
      "alias": "  - high_school_physics",
      "acc,none": 0.7218543046357616,
      "acc_stderr,none": 0.03658603262763743
    },
    "mmlu_high_school_statistics": {
      "alias": "  - high_school_statistics",
      "acc,none": 0.7824074074074074,
      "acc_stderr,none": 0.02813968944485967
    },
    "mmlu_machine_learning": {
      "alias": "  - machine_learning",
      "acc,none": 0.6428571428571429,
      "acc_stderr,none": 0.04547960999764376
    }
  },
  "groups": {
    "mmlu": {
      "acc,none": 0.7893462469733656,
      "acc_stderr,none": 0.0032972614303645293,
      "alias": "mmlu"
    },
    "mmlu_humanities": {
      "acc,none": 0.7330499468650372,
      "acc_stderr,none": 0.006167732304660011,
      "alias": " - humanities"
    },
    "mmlu_other": {
      "acc,none": 0.8181525587383328,
      "acc_stderr,none": 0.0066715060893313355,
      "alias": " - other"
    },
    "mmlu_social_sciences": {
      "acc,none": 0.8657783555411115,
      "acc_stderr,none": 0.006066980585852004,
      "alias": " - social sciences"
    },
    "mmlu_stem": {
      "acc,none": 0.7703774183317476,
      "acc_stderr,none": 0.007255670011633473,
      "alias": " - stem"
    }
  },
  "group_subtasks": {
    "mmlu_humanities": [
      "mmlu_jurisprudence",
      "mmlu_high_school_us_history",
      "mmlu_philosophy",
      "mmlu_high_school_european_history",
      "mmlu_formal_logic",
      "mmlu_international_law",
      "mmlu_moral_disputes",
      "mmlu_prehistory",
      "mmlu_high_school_world_history",
      "mmlu_professional_law",
      "mmlu_logical_fallacies",
      "mmlu_moral_scenarios",
      "mmlu_world_religions"
    ],
    "mmlu_social_sciences": [
      "mmlu_us_foreign_policy",
      "mmlu_high_school_macroeconomics",
      "mmlu_high_school_geography",
      "mmlu_high_school_government_and_politics",
      "mmlu_professional_psychology",
      "mmlu_high_school_psychology",
      "mmlu_econometrics",
      "mmlu_security_studies",
      "mmlu_public_relations",
      "mmlu_high_school_microeconomics",
      "mmlu_sociology",
      "mmlu_human_sexuality"
    ],
    "mmlu_other": [
      "mmlu_global_facts",
      "mmlu_nutrition",
      "mmlu_management",
      "mmlu_professional_medicine",
      "mmlu_virology",
      "mmlu_human_aging",
      "mmlu_professional_accounting",
      "mmlu_miscellaneous",
      "mmlu_college_medicine",
      "mmlu_clinical_knowledge",
      "mmlu_marketing",
      "mmlu_medical_genetics",
      "mmlu_business_ethics"
    ],
    "mmlu_stem": [
      "mmlu_high_school_biology",
      "mmlu_college_physics",
      "mmlu_college_mathematics",
      "mmlu_elementary_mathematics",
      "mmlu_high_school_physics",
      "mmlu_college_chemistry",
      "mmlu_college_biology",
      "mmlu_abstract_algebra",
      "mmlu_high_school_statistics",
      "mmlu_high_school_mathematics",
      "mmlu_electrical_engineering",
      "mmlu_machine_learning",
      "mmlu_high_school_computer_science",
      "mmlu_high_school_chemistry",
      "mmlu_anatomy",
      "mmlu_astronomy",
      "mmlu_computer_security",
      "mmlu_college_computer_science",
      "mmlu_conceptual_physics"
    ],
    "mmlu": [
      "mmlu_stem",
      "mmlu_other",
      "mmlu_social_sciences",
      "mmlu_humanities"
    ]
  },
  "configs": {
    "mmlu_abstract_algebra": {
      "task": "mmlu_abstract_algebra",
      "task_alias": "abstract_algebra",
      "tag": "mmlu_stem_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "abstract_algebra",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_anatomy": {
      "task": "mmlu_anatomy",
      "task_alias": "anatomy",
      "tag": "mmlu_stem_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "anatomy",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about anatomy.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_astronomy": {
      "task": "mmlu_astronomy",
      "task_alias": "astronomy",
      "tag": "mmlu_stem_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "astronomy",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about astronomy.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_business_ethics": {
      "task": "mmlu_business_ethics",
      "task_alias": "business_ethics",
      "tag": "mmlu_other_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "business_ethics",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about business ethics.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_clinical_knowledge": {
      "task": "mmlu_clinical_knowledge",
      "task_alias": "clinical_knowledge",
      "tag": "mmlu_other_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "clinical_knowledge",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_college_biology": {
      "task": "mmlu_college_biology",
      "task_alias": "college_biology",
      "tag": "mmlu_stem_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "college_biology",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about college biology.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_college_chemistry": {
      "task": "mmlu_college_chemistry",
      "task_alias": "college_chemistry",
      "tag": "mmlu_stem_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "college_chemistry",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about college chemistry.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_college_computer_science": {
      "task": "mmlu_college_computer_science",
      "task_alias": "college_computer_science",
      "tag": "mmlu_stem_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "college_computer_science",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about college computer science.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_college_mathematics": {
      "task": "mmlu_college_mathematics",
      "task_alias": "college_mathematics",
      "tag": "mmlu_stem_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "college_mathematics",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about college mathematics.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_college_medicine": {
      "task": "mmlu_college_medicine",
      "task_alias": "college_medicine",
      "tag": "mmlu_other_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "college_medicine",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about college medicine.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_college_physics": {
      "task": "mmlu_college_physics",
      "task_alias": "college_physics",
      "tag": "mmlu_stem_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "college_physics",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about college physics.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_computer_security": {
      "task": "mmlu_computer_security",
      "task_alias": "computer_security",
      "tag": "mmlu_stem_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "computer_security",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about computer security.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_conceptual_physics": {
      "task": "mmlu_conceptual_physics",
      "task_alias": "conceptual_physics",
      "tag": "mmlu_stem_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "conceptual_physics",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_econometrics": {
      "task": "mmlu_econometrics",
      "task_alias": "econometrics",
      "tag": "mmlu_social_sciences_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "econometrics",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about econometrics.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_electrical_engineering": {
      "task": "mmlu_electrical_engineering",
      "task_alias": "electrical_engineering",
      "tag": "mmlu_stem_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "electrical_engineering",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_elementary_mathematics": {
      "task": "mmlu_elementary_mathematics",
      "task_alias": "elementary_mathematics",
      "tag": "mmlu_stem_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "elementary_mathematics",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_formal_logic": {
      "task": "mmlu_formal_logic",
      "task_alias": "formal_logic",
      "tag": "mmlu_humanities_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "formal_logic",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about formal logic.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_global_facts": {
      "task": "mmlu_global_facts",
      "task_alias": "global_facts",
      "tag": "mmlu_other_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "global_facts",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about global facts.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_high_school_biology": {
      "task": "mmlu_high_school_biology",
      "task_alias": "high_school_biology",
      "tag": "mmlu_stem_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "high_school_biology",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about high school biology.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_high_school_chemistry": {
      "task": "mmlu_high_school_chemistry",
      "task_alias": "high_school_chemistry",
      "tag": "mmlu_stem_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "high_school_chemistry",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_high_school_computer_science": {
      "task": "mmlu_high_school_computer_science",
      "task_alias": "high_school_computer_science",
      "tag": "mmlu_stem_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "high_school_computer_science",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about high school computer science.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_high_school_european_history": {
      "task": "mmlu_high_school_european_history",
      "task_alias": "high_school_european_history",
      "tag": "mmlu_humanities_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "high_school_european_history",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about high school european history.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_high_school_geography": {
      "task": "mmlu_high_school_geography",
      "task_alias": "high_school_geography",
      "tag": "mmlu_social_sciences_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "high_school_geography",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about high school geography.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_high_school_government_and_politics": {
      "task": "mmlu_high_school_government_and_politics",
      "task_alias": "high_school_government_and_politics",
      "tag": "mmlu_social_sciences_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "high_school_government_and_politics",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_high_school_macroeconomics": {
      "task": "mmlu_high_school_macroeconomics",
      "task_alias": "high_school_macroeconomics",
      "tag": "mmlu_social_sciences_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "high_school_macroeconomics",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_high_school_mathematics": {
      "task": "mmlu_high_school_mathematics",
      "task_alias": "high_school_mathematics",
      "tag": "mmlu_stem_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "high_school_mathematics",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_high_school_microeconomics": {
      "task": "mmlu_high_school_microeconomics",
      "task_alias": "high_school_microeconomics",
      "tag": "mmlu_social_sciences_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "high_school_microeconomics",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_high_school_physics": {
      "task": "mmlu_high_school_physics",
      "task_alias": "high_school_physics",
      "tag": "mmlu_stem_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "high_school_physics",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about high school physics.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_high_school_psychology": {
      "task": "mmlu_high_school_psychology",
      "task_alias": "high_school_psychology",
      "tag": "mmlu_social_sciences_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "high_school_psychology",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about high school psychology.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_high_school_statistics": {
      "task": "mmlu_high_school_statistics",
      "task_alias": "high_school_statistics",
      "tag": "mmlu_stem_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "high_school_statistics",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about high school statistics.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_high_school_us_history": {
      "task": "mmlu_high_school_us_history",
      "task_alias": "high_school_us_history",
      "tag": "mmlu_humanities_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "high_school_us_history",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about high school us history.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_high_school_world_history": {
      "task": "mmlu_high_school_world_history",
      "task_alias": "high_school_world_history",
      "tag": "mmlu_humanities_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "high_school_world_history",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about high school world history.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_human_aging": {
      "task": "mmlu_human_aging",
      "task_alias": "human_aging",
      "tag": "mmlu_other_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "human_aging",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about human aging.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_human_sexuality": {
      "task": "mmlu_human_sexuality",
      "task_alias": "human_sexuality",
      "tag": "mmlu_social_sciences_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "human_sexuality",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about human sexuality.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_international_law": {
      "task": "mmlu_international_law",
      "task_alias": "international_law",
      "tag": "mmlu_humanities_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "international_law",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about international law.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_jurisprudence": {
      "task": "mmlu_jurisprudence",
      "task_alias": "jurisprudence",
      "tag": "mmlu_humanities_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "jurisprudence",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_logical_fallacies": {
      "task": "mmlu_logical_fallacies",
      "task_alias": "logical_fallacies",
      "tag": "mmlu_humanities_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "logical_fallacies",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_machine_learning": {
      "task": "mmlu_machine_learning",
      "task_alias": "machine_learning",
      "tag": "mmlu_stem_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "machine_learning",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about machine learning.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_management": {
      "task": "mmlu_management",
      "task_alias": "management",
      "tag": "mmlu_other_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "management",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about management.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_marketing": {
      "task": "mmlu_marketing",
      "task_alias": "marketing",
      "tag": "mmlu_other_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "marketing",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about marketing.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_medical_genetics": {
      "task": "mmlu_medical_genetics",
      "task_alias": "medical_genetics",
      "tag": "mmlu_other_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "medical_genetics",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about medical genetics.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_miscellaneous": {
      "task": "mmlu_miscellaneous",
      "task_alias": "miscellaneous",
      "tag": "mmlu_other_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "miscellaneous",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_moral_disputes": {
      "task": "mmlu_moral_disputes",
      "task_alias": "moral_disputes",
      "tag": "mmlu_humanities_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "moral_disputes",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about moral disputes.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_moral_scenarios": {
      "task": "mmlu_moral_scenarios",
      "task_alias": "moral_scenarios",
      "tag": "mmlu_humanities_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "moral_scenarios",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_nutrition": {
      "task": "mmlu_nutrition",
      "task_alias": "nutrition",
      "tag": "mmlu_other_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "nutrition",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about nutrition.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_philosophy": {
      "task": "mmlu_philosophy",
      "task_alias": "philosophy",
      "tag": "mmlu_humanities_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "philosophy",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about philosophy.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_prehistory": {
      "task": "mmlu_prehistory",
      "task_alias": "prehistory",
      "tag": "mmlu_humanities_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "prehistory",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about prehistory.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_professional_accounting": {
      "task": "mmlu_professional_accounting",
      "task_alias": "professional_accounting",
      "tag": "mmlu_other_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "professional_accounting",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about professional accounting.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_professional_law": {
      "task": "mmlu_professional_law",
      "task_alias": "professional_law",
      "tag": "mmlu_humanities_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "professional_law",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about professional law.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_professional_medicine": {
      "task": "mmlu_professional_medicine",
      "task_alias": "professional_medicine",
      "tag": "mmlu_other_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "professional_medicine",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about professional medicine.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_professional_psychology": {
      "task": "mmlu_professional_psychology",
      "task_alias": "professional_psychology",
      "tag": "mmlu_social_sciences_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "professional_psychology",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about professional psychology.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_public_relations": {
      "task": "mmlu_public_relations",
      "task_alias": "public_relations",
      "tag": "mmlu_social_sciences_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "public_relations",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about public relations.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_security_studies": {
      "task": "mmlu_security_studies",
      "task_alias": "security_studies",
      "tag": "mmlu_social_sciences_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "security_studies",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about security studies.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_sociology": {
      "task": "mmlu_sociology",
      "task_alias": "sociology",
      "tag": "mmlu_social_sciences_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "sociology",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about sociology.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_us_foreign_policy": {
      "task": "mmlu_us_foreign_policy",
      "task_alias": "us_foreign_policy",
      "tag": "mmlu_social_sciences_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "us_foreign_policy",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_virology": {
      "task": "mmlu_virology",
      "task_alias": "virology",
      "tag": "mmlu_other_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "virology",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about virology.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "mmlu_world_religions": {
      "task": "mmlu_world_religions",
      "task_alias": "world_religions",
      "tag": "mmlu_humanities_tasks",
      "dataset_path": "hails/mmlu_no_train",
      "dataset_name": "world_religions",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "test_split": "test",
      "fewshot_split": "dev",
      "doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "A",
        "B",
        "C",
        "D"
      ],
      "description": "The following are multiple choice questions (with answers) about world religions.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    }
  },
  "versions": {
    "mmlu": 2,
    "mmlu_abstract_algebra": 1.0,
    "mmlu_anatomy": 1.0,
    "mmlu_astronomy": 1.0,
    "mmlu_business_ethics": 1.0,
    "mmlu_clinical_knowledge": 1.0,
    "mmlu_college_biology": 1.0,
    "mmlu_college_chemistry": 1.0,
    "mmlu_college_computer_science": 1.0,
    "mmlu_college_mathematics": 1.0,
    "mmlu_college_medicine": 1.0,
    "mmlu_college_physics": 1.0,
    "mmlu_computer_security": 1.0,
    "mmlu_conceptual_physics": 1.0,
    "mmlu_econometrics": 1.0,
    "mmlu_electrical_engineering": 1.0,
    "mmlu_elementary_mathematics": 1.0,
    "mmlu_formal_logic": 1.0,
    "mmlu_global_facts": 1.0,
    "mmlu_high_school_biology": 1.0,
    "mmlu_high_school_chemistry": 1.0,
    "mmlu_high_school_computer_science": 1.0,
    "mmlu_high_school_european_history": 1.0,
    "mmlu_high_school_geography": 1.0,
    "mmlu_high_school_government_and_politics": 1.0,
    "mmlu_high_school_macroeconomics": 1.0,
    "mmlu_high_school_mathematics": 1.0,
    "mmlu_high_school_microeconomics": 1.0,
    "mmlu_high_school_physics": 1.0,
    "mmlu_high_school_psychology": 1.0,
    "mmlu_high_school_statistics": 1.0,
    "mmlu_high_school_us_history": 1.0,
    "mmlu_high_school_world_history": 1.0,
    "mmlu_human_aging": 1.0,
    "mmlu_human_sexuality": 1.0,
    "mmlu_humanities": 2,
    "mmlu_international_law": 1.0,
    "mmlu_jurisprudence": 1.0,
    "mmlu_logical_fallacies": 1.0,
    "mmlu_machine_learning": 1.0,
    "mmlu_management": 1.0,
    "mmlu_marketing": 1.0,
    "mmlu_medical_genetics": 1.0,
    "mmlu_miscellaneous": 1.0,
    "mmlu_moral_disputes": 1.0,
    "mmlu_moral_scenarios": 1.0,
    "mmlu_nutrition": 1.0,
    "mmlu_other": 2,
    "mmlu_philosophy": 1.0,
    "mmlu_prehistory": 1.0,
    "mmlu_professional_accounting": 1.0,
    "mmlu_professional_law": 1.0,
    "mmlu_professional_medicine": 1.0,
    "mmlu_professional_psychology": 1.0,
    "mmlu_public_relations": 1.0,
    "mmlu_security_studies": 1.0,
    "mmlu_social_sciences": 2,
    "mmlu_sociology": 1.0,
    "mmlu_stem": 2,
    "mmlu_us_foreign_policy": 1.0,
    "mmlu_virology": 1.0,
    "mmlu_world_religions": 1.0
  },
  "n-shot": {
    "mmlu_abstract_algebra": 0,
    "mmlu_anatomy": 0,
    "mmlu_astronomy": 0,
    "mmlu_business_ethics": 0,
    "mmlu_clinical_knowledge": 0,
    "mmlu_college_biology": 0,
    "mmlu_college_chemistry": 0,
    "mmlu_college_computer_science": 0,
    "mmlu_college_mathematics": 0,
    "mmlu_college_medicine": 0,
    "mmlu_college_physics": 0,
    "mmlu_computer_security": 0,
    "mmlu_conceptual_physics": 0,
    "mmlu_econometrics": 0,
    "mmlu_electrical_engineering": 0,
    "mmlu_elementary_mathematics": 0,
    "mmlu_formal_logic": 0,
    "mmlu_global_facts": 0,
    "mmlu_high_school_biology": 0,
    "mmlu_high_school_chemistry": 0,
    "mmlu_high_school_computer_science": 0,
    "mmlu_high_school_european_history": 0,
    "mmlu_high_school_geography": 0,
    "mmlu_high_school_government_and_politics": 0,
    "mmlu_high_school_macroeconomics": 0,
    "mmlu_high_school_mathematics": 0,
    "mmlu_high_school_microeconomics": 0,
    "mmlu_high_school_physics": 0,
    "mmlu_high_school_psychology": 0,
    "mmlu_high_school_statistics": 0,
    "mmlu_high_school_us_history": 0,
    "mmlu_high_school_world_history": 0,
    "mmlu_human_aging": 0,
    "mmlu_human_sexuality": 0,
    "mmlu_international_law": 0,
    "mmlu_jurisprudence": 0,
    "mmlu_logical_fallacies": 0,
    "mmlu_machine_learning": 0,
    "mmlu_management": 0,
    "mmlu_marketing": 0,
    "mmlu_medical_genetics": 0,
    "mmlu_miscellaneous": 0,
    "mmlu_moral_disputes": 0,
    "mmlu_moral_scenarios": 0,
    "mmlu_nutrition": 0,
    "mmlu_philosophy": 0,
    "mmlu_prehistory": 0,
    "mmlu_professional_accounting": 0,
    "mmlu_professional_law": 0,
    "mmlu_professional_medicine": 0,
    "mmlu_professional_psychology": 0,
    "mmlu_public_relations": 0,
    "mmlu_security_studies": 0,
    "mmlu_sociology": 0,
    "mmlu_us_foreign_policy": 0,
    "mmlu_virology": 0,
    "mmlu_world_religions": 0
  },
  "higher_is_better": {
    "mmlu": {
      "acc": true
    },
    "mmlu_abstract_algebra": {
      "acc": true
    },
    "mmlu_anatomy": {
      "acc": true
    },
    "mmlu_astronomy": {
      "acc": true
    },
    "mmlu_business_ethics": {
      "acc": true
    },
    "mmlu_clinical_knowledge": {
      "acc": true
    },
    "mmlu_college_biology": {
      "acc": true
    },
    "mmlu_college_chemistry": {
      "acc": true
    },
    "mmlu_college_computer_science": {
      "acc": true
    },
    "mmlu_college_mathematics": {
      "acc": true
    },
    "mmlu_college_medicine": {
      "acc": true
    },
    "mmlu_college_physics": {
      "acc": true
    },
    "mmlu_computer_security": {
      "acc": true
    },
    "mmlu_conceptual_physics": {
      "acc": true
    },
    "mmlu_econometrics": {
      "acc": true
    },
    "mmlu_electrical_engineering": {
      "acc": true
    },
    "mmlu_elementary_mathematics": {
      "acc": true
    },
    "mmlu_formal_logic": {
      "acc": true
    },
    "mmlu_global_facts": {
      "acc": true
    },
    "mmlu_high_school_biology": {
      "acc": true
    },
    "mmlu_high_school_chemistry": {
      "acc": true
    },
    "mmlu_high_school_computer_science": {
      "acc": true
    },
    "mmlu_high_school_european_history": {
      "acc": true
    },
    "mmlu_high_school_geography": {
      "acc": true
    },
    "mmlu_high_school_government_and_politics": {
      "acc": true
    },
    "mmlu_high_school_macroeconomics": {
      "acc": true
    },
    "mmlu_high_school_mathematics": {
      "acc": true
    },
    "mmlu_high_school_microeconomics": {
      "acc": true
    },
    "mmlu_high_school_physics": {
      "acc": true
    },
    "mmlu_high_school_psychology": {
      "acc": true
    },
    "mmlu_high_school_statistics": {
      "acc": true
    },
    "mmlu_high_school_us_history": {
      "acc": true
    },
    "mmlu_high_school_world_history": {
      "acc": true
    },
    "mmlu_human_aging": {
      "acc": true
    },
    "mmlu_human_sexuality": {
      "acc": true
    },
    "mmlu_humanities": {
      "acc": true
    },
    "mmlu_international_law": {
      "acc": true
    },
    "mmlu_jurisprudence": {
      "acc": true
    },
    "mmlu_logical_fallacies": {
      "acc": true
    },
    "mmlu_machine_learning": {
      "acc": true
    },
    "mmlu_management": {
      "acc": true
    },
    "mmlu_marketing": {
      "acc": true
    },
    "mmlu_medical_genetics": {
      "acc": true
    },
    "mmlu_miscellaneous": {
      "acc": true
    },
    "mmlu_moral_disputes": {
      "acc": true
    },
    "mmlu_moral_scenarios": {
      "acc": true
    },
    "mmlu_nutrition": {
      "acc": true
    },
    "mmlu_other": {
      "acc": true
    },
    "mmlu_philosophy": {
      "acc": true
    },
    "mmlu_prehistory": {
      "acc": true
    },
    "mmlu_professional_accounting": {
      "acc": true
    },
    "mmlu_professional_law": {
      "acc": true
    },
    "mmlu_professional_medicine": {
      "acc": true
    },
    "mmlu_professional_psychology": {
      "acc": true
    },
    "mmlu_public_relations": {
      "acc": true
    },
    "mmlu_security_studies": {
      "acc": true
    },
    "mmlu_social_sciences": {
      "acc": true
    },
    "mmlu_sociology": {
      "acc": true
    },
    "mmlu_stem": {
      "acc": true
    },
    "mmlu_us_foreign_policy": {
      "acc": true
    },
    "mmlu_virology": {
      "acc": true
    },
    "mmlu_world_religions": {
      "acc": true
    }
  },
  "n-samples": {
    "mmlu_high_school_biology": {
      "original": 310,
      "effective": 310
    },
    "mmlu_college_physics": {
      "original": 102,
      "effective": 102
    },
    "mmlu_college_mathematics": {
      "original": 100,
      "effective": 100
    },
    "mmlu_elementary_mathematics": {
      "original": 378,
      "effective": 378
    },
    "mmlu_high_school_physics": {
      "original": 151,
      "effective": 151
    },
    "mmlu_college_chemistry": {
      "original": 100,
      "effective": 100
    },
    "mmlu_college_biology": {
      "original": 144,
      "effective": 144
    },
    "mmlu_abstract_algebra": {
      "original": 100,
      "effective": 100
    },
    "mmlu_high_school_statistics": {
      "original": 216,
      "effective": 216
    },
    "mmlu_high_school_mathematics": {
      "original": 270,
      "effective": 270
    },
    "mmlu_electrical_engineering": {
      "original": 145,
      "effective": 145
    },
    "mmlu_machine_learning": {
      "original": 112,
      "effective": 112
    },
    "mmlu_high_school_computer_science": {
      "original": 100,
      "effective": 100
    },
    "mmlu_high_school_chemistry": {
      "original": 203,
      "effective": 203
    },
    "mmlu_anatomy": {
      "original": 135,
      "effective": 135
    },
    "mmlu_astronomy": {
      "original": 152,
      "effective": 152
    },
    "mmlu_computer_security": {
      "original": 100,
      "effective": 100
    },
    "mmlu_college_computer_science": {
      "original": 100,
      "effective": 100
    },
    "mmlu_conceptual_physics": {
      "original": 235,
      "effective": 235
    },
    "mmlu_global_facts": {
      "original": 100,
      "effective": 100
    },
    "mmlu_nutrition": {
      "original": 306,
      "effective": 306
    },
    "mmlu_management": {
      "original": 103,
      "effective": 103
    },
    "mmlu_professional_medicine": {
      "original": 272,
      "effective": 272
    },
    "mmlu_virology": {
      "original": 166,
      "effective": 166
    },
    "mmlu_human_aging": {
      "original": 223,
      "effective": 223
    },
    "mmlu_professional_accounting": {
      "original": 282,
      "effective": 282
    },
    "mmlu_miscellaneous": {
      "original": 783,
      "effective": 783
    },
    "mmlu_college_medicine": {
      "original": 173,
      "effective": 173
    },
    "mmlu_clinical_knowledge": {
      "original": 265,
      "effective": 265
    },
    "mmlu_marketing": {
      "original": 234,
      "effective": 234
    },
    "mmlu_medical_genetics": {
      "original": 100,
      "effective": 100
    },
    "mmlu_business_ethics": {
      "original": 100,
      "effective": 100
    },
    "mmlu_us_foreign_policy": {
      "original": 100,
      "effective": 100
    },
    "mmlu_high_school_macroeconomics": {
      "original": 390,
      "effective": 390
    },
    "mmlu_high_school_geography": {
      "original": 198,
      "effective": 198
    },
    "mmlu_high_school_government_and_politics": {
      "original": 193,
      "effective": 193
    },
    "mmlu_professional_psychology": {
      "original": 612,
      "effective": 612
    },
    "mmlu_high_school_psychology": {
      "original": 545,
      "effective": 545
    },
    "mmlu_econometrics": {
      "original": 114,
      "effective": 114
    },
    "mmlu_security_studies": {
      "original": 245,
      "effective": 245
    },
    "mmlu_public_relations": {
      "original": 110,
      "effective": 110
    },
    "mmlu_high_school_microeconomics": {
      "original": 238,
      "effective": 238
    },
    "mmlu_sociology": {
      "original": 201,
      "effective": 201
    },
    "mmlu_human_sexuality": {
      "original": 131,
      "effective": 131
    },
    "mmlu_jurisprudence": {
      "original": 108,
      "effective": 108
    },
    "mmlu_high_school_us_history": {
      "original": 204,
      "effective": 204
    },
    "mmlu_philosophy": {
      "original": 311,
      "effective": 311
    },
    "mmlu_high_school_european_history": {
      "original": 165,
      "effective": 165
    },
    "mmlu_formal_logic": {
      "original": 126,
      "effective": 126
    },
    "mmlu_international_law": {
      "original": 121,
      "effective": 121
    },
    "mmlu_moral_disputes": {
      "original": 346,
      "effective": 346
    },
    "mmlu_prehistory": {
      "original": 324,
      "effective": 324
    },
    "mmlu_high_school_world_history": {
      "original": 237,
      "effective": 237
    },
    "mmlu_professional_law": {
      "original": 1534,
      "effective": 1534
    },
    "mmlu_logical_fallacies": {
      "original": 163,
      "effective": 163
    },
    "mmlu_moral_scenarios": {
      "original": 895,
      "effective": 895
    },
    "mmlu_world_religions": {
      "original": 171,
      "effective": 171
    }
  },
  "config": {
    "model": "hf",
    "model_args": "parallelize=False,pretrained=Qwen/Qwen2.5-14B-Instruct,trust_remote_code=True,mm=False",
    "model_num_parameters": 14770033664,
    "model_dtype": "torch.bfloat16",
    "model_revision": "main",
    "model_sha": "cf98f3b3bbb457ad9e2bb7baf9a0125b6b88caa8",
    "batch_size": 1,
    "batch_sizes": [],
    "device": null,
    "use_cache": null,
    "limit": null,
    "bootstrap_iters": 100000,
    "gen_kwargs": null,
    "random_seed": 0,
    "numpy_seed": 1234,
    "torch_seed": 1234,
    "fewshot_seed": 1234
  },
  "git_hash": "3127d82f",
  "date": 1731241042.151074,
  "pretty_env_info": "PyTorch version: 2.1.0a0+29c30b1\nIs debug build: False\nCUDA used to build PyTorch: 12.2\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture:                       x86_64\nCPU op-mode(s):                     32-bit, 64-bit\nAddress sizes:                      48 bits physical, 48 bits virtual\nByte Order:                         Little Endian\nCPU(s):                             48\nOn-line CPU(s) list:                0-47\nVendor ID:                          AuthenticAMD\nModel name:                         AMD EPYC 7V13 64-Core Processor\nCPU family:                         25\nModel:                              1\nThread(s) per core:                 1\nCore(s) per socket:                 48\nSocket(s):                          1\nStepping:                           1\nBogoMIPS:                           4890.87\nFlags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor:                  Microsoft\nVirtualization type:                full\nL1d cache:                          1.5 MiB (48 instances)\nL1i cache:                          1.5 MiB (48 instances)\nL2 cache:                           24 MiB (48 instances)\nL3 cache:                           192 MiB (6 instances)\nNUMA node(s):                       2\nNUMA node0 CPU(s):                  0-23\nNUMA node1 CPU(s):                  24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit:        Not affected\nVulnerability L1tf:                 Not affected\nVulnerability Mds:                  Not affected\nVulnerability Meltdown:             Not affected\nVulnerability Mmio stale data:      Not affected\nVulnerability Retbleed:             Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass:    Vulnerable\nVulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2:           Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds:                Not affected\nVulnerability Tsx async abort:      Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.22.2\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.1.0a0+29c30b1\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.16.0a0\n[pip3] triton==2.0.0.dev20221202\n[conda] Could not collect",
  "transformers_version": "4.38.2",
  "upper_git_hash": null,
  "tokenizer_pad_token": [
    "<|endoftext|>",
    "151643"
  ],
  "tokenizer_eos_token": [
    "<|im_end|>",
    "151645"
  ],
  "tokenizer_bos_token": [
    null,
    "None"
  ],
  "eot_token_id": 151645,
  "max_length": 32768,
  "task_hashes": {},
  "model_source": "hf",
  "model_name": "Qwen/Qwen2.5-14B-Instruct",
  "model_name_sanitized": "Qwen__Qwen2.5-14B-Instruct",
  "system_instruction": null,
  "system_instruction_sha": null,
  "fewshot_as_multiturn": false,
  "chat_template": null,
  "chat_template_sha": null,
  "start_time": 15088.00196464,
  "end_time": 16597.850920194,
  "total_evaluation_time_seconds": "1509.848955554"
}