File size: 1,474 Bytes
cfd99fa 2f1cd91 cfd99fa 65a803d cfd99fa fc14946 6a85d56 65a803d 6a85d56 65a803d 6a85d56 65a803d 6a85d56 65a803d 6a85d56 65a803d 6a85d56 65a803d 6a85d56 65a803d 6a85d56 65a803d 6a85d56 65a803d 6a85d56 65a803d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
license: apache-2.0
datasets:
- ARTPARK-IISc/Vaani
language:
- hi
base_model:
- openai/whisper-small
pipeline_tag: automatic-speech-recognition
---
# Whisper-small-vaani-kannada
This is a fine-tuned version of [OpenAI's Whisper-Small](https://huggingface.co/openai/whisper-small), trained on Kannada speech from multiple datasets.
# Usage
This can be used with the pipeline function from the Transformers module.
```python
import torch
from transformers import pipeline
audio = "path to the audio file to be transcribed"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
modelTags="ARTPARK-IISc/whisper-small-vaani-kannada"
transcribe = pipeline(task="automatic-speech-recognition", model=modelTags, chunk_length_s=30, device=device)
transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(language="ka", task="transcribe")
print('Transcription: ', transcribe(audio)["text"])
```
# Training and Evaluation
The models has finetuned using folllowing dataset [Vaani](https://huggingface.co/datasets/ARTPARK-IISc/Vaani) , [Fleurs](https://huggingface.co/datasets/google/fleurs),[IndicTTS](https://huggingface.co/datasets/SPRINGLab/IndicTTS-Hindi)
The performance of the model was evaluated using multiple datasets, and the evaluation results are provided below.
| Dataset | WER |
| :---: | :---: |
| Fleurs | 29.16 |
| IndicTTS | 15.27 |
| Kathbath | 33.94 |
| Kathbath Noisy| 38.46 |
| Vaani | 69.78 |
|