--- license: apache-2.0 datasets: - ARTPARK-IISc/Vaani language: - hi base_model: - openai/whisper-small pipeline_tag: automatic-speech-recognition --- # Whisper-small-vaani-kannada This is a fine-tuned version of [OpenAI's Whisper-Small](https://huggingface.co/openai/whisper-small), trained on Kannada speech from multiple datasets. # Usage This can be used with the pipeline function from the Transformers module. ```python import torch from transformers import pipeline audio = "path to the audio file to be transcribed" device = "cuda:0" if torch.cuda.is_available() else "cpu" modelTags="ARTPARK-IISc/whisper-small-vaani-kannada" transcribe = pipeline(task="automatic-speech-recognition", model=modelTags, chunk_length_s=30, device=device) transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(language="ka", task="transcribe") print('Transcription: ', transcribe(audio)["text"]) ``` # Training and Evaluation The models has finetuned using folllowing dataset [Vaani](https://huggingface.co/datasets/ARTPARK-IISc/Vaani) , [Fleurs](https://huggingface.co/datasets/google/fleurs),[IndicTTS](https://huggingface.co/datasets/SPRINGLab/IndicTTS-Hindi) The performance of the model was evaluated using multiple datasets, and the evaluation results are provided below. | Dataset | WER | | :---: | :---: | | Fleurs | 29.16 | | IndicTTS | 15.27 | | Kathbath | 33.94 | | Kathbath Noisy| 38.46 | | Vaani | 69.78 |