File size: 7,670 Bytes
b96e3e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1798e4b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
---
license: apache-2.0
---
# Emotion2Vec-S

C<sup>2</sup>SER: [Paper](https://arxiv.org/abs/2502.18186) | [Code](https://github.com/zxzhao0/C2SER) | [HuggingFace](https://huggingface.co/collections/ASLP-lab/c2ser-67bc735d820403e7969fe8a0)

## Introduction

This repository contains the implementation of Emotion2Vec-S, a self-supervised learning (SSL) model for speech emotion recognition, as presented in our paper "Steering Language Model to Stable Speech Emotion Recognition via Contextual Perception and Chain of Thought". 

## Requirements and Installation

This project follows the fairseq installation process.

### Requirements

- PyTorch version >= 1.10.0
- Python version >= 3.8

### Installation

To install fairseq and develop locally:

```bash
git clone https://github.com/pytorch/fairseq
cd fairseq
pip install --editable ./
```

### Feature Extraction

You can download the pre-trained [Emotion2vec-S model](https://drive.google.com/drive/folders/1LWWi6bahzn7fJP4fCgPleOyQ30sD_BWO?usp=drive_link) and put it in the `./Emotion2Vec-S/ckpt` folder. 
Meanwhile,we have provided the pretrained checkpoints in the huggingface model hub. You can also download ckpt file from [here](https://huggingface.co/ASLP-lab/Emotion2Vec-S). We also provide [here](https://drive.google.com/drive/folders/12AOVJT7I9GSLJnjHa-Elc-UKgog-mZR2) the feature files for the Emo-Emilia dataset extracted using Emotion2vec-S. 

If you want to extract features using Emotion2Vec-S,you will also need to provide a `wav.scp` file and place it in the `./Emotion2Vec-S` directory. Here is an example of the `wav.scp` file::
```pgsql
audio_name1 /path/to/audio_name1.wav
audio_name2 /path/to/audio_name2.wav
audio_name3 /path/to/audio_name3.wav
```

Next, you can directly run the following code to extract features:
```python
import torch
import os
import sys
import json
import numpy as np
import argparse
from tqdm import tqdm
import torchaudio
import torch.nn.functional as F
import fairseq
from dataclasses import dataclass

SAMPLING_RATE=16000

@dataclass
class UserDirModule:
    user_dir: str

def extract_fairseq_feature(wav_path, model, device):
    try:
        wav, sr = torchaudio.load(wav_path)
        # 合并多声道为单声道(取平均)
        if wav.size(0) > 1:
            wav = torch.mean(wav, dim=0, keepdim=True)
        if sr != SAMPLING_RATE:
            wav = torchaudio.functional.resample(wav, sr, SAMPLING_RATE)
        wav = wav[0, :].view(1, -1)
        wav = wav.to(device)
        out = model.extract_features(wav)
        return out
    except Exception as e:
        print(f"Error processing audio file {wav_path}: {e}")
        return None

if __name__ == '__main__':

    parser = argparse.ArgumentParser()
    parser.add_argument('--model_path', type=str, default="./Emotion2Vec-S/ckpt/checkpoint.pt")
    parser.add_argument('--model_dir', type=str, default="./Emotion2Vec-S/examples/data2vec/")
    parser.add_argument('--dump_dir', type=str, default="./Emotion2Vec-S/features_frm")
    parser.add_argument('--device', type=str, default='cuda')
    parser.add_argument('--data', type=str, default="./Emotion2Vec-S/wav.scp")
    parser.add_argument('--level', type=str, default="frame", help="frame or utterance")
    args = parser.parse_args()

    data = {}
    with open(args.data, 'r') as f:
        for line in f:
            seg_id, wav_path = line.strip().split(maxsplit=1)
            data[seg_id] = wav_path

    os.makedirs(args.dump_dir, exist_ok=True)

    seg_ids = data.keys()
    print(f'Loaded {len(seg_ids)} audio entries')
    # load models
    my_model_path = UserDirModule(args.model_dir)
    fairseq.utils.import_user_module(my_model_path)
    model, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([args.model_path])
    model = model[0].to(args.device)
    
    for seg_id in tqdm(seg_ids):

        wav_path = data[seg_id]
        if not os.path.exists(wav_path):
            print(f"WARNING: {wav_path} does not exist")
            continue 
        try:
            torchaudio.load(wav_path)
        except:
            print(f'ERROR: Failed to load {wav_path}')
            continue         

        feat = extract_fairseq_feature(wav_path, model, args.device)

        if feat is not None:
            if args.level == 'frame':
                feat = feat['x'].cpu().detach().numpy()[0]
            elif args.level == 'utterance':
                feat = feat['utt_x'].cpu().detach().numpy()[0] 
            else:
                raise ValueError("Unknown level: {}".format(args.level))            

            save_path = os.path.join(args.dump_dir, f"{seg_id}.npy")
            os.makedirs(os.path.dirname(save_path), exist_ok=True)
            np.save(save_path, feat)
            print(f"Processed: {seg_id} | Shape: {feat.shape} | Saved to: {save_path}")
        else:
            print(f"Skipped problematic file: {seg_id}")

```
Alternatively, you can adjust the code according to your needs. The code path is `./Emotion2Vec-S/speech_feature_extraction.py`. You can also use the `./Emotion2Vec-S/extract_feature.sh` script to batch process features for multiple datasets. The script supports parallel processing and offers the following parameters:

- `--model_path`: Path to the checkpoint file
- `--model_dir`: Path to the model
- `--dump_dir`: Directory to save extracted features
- `--device`: Device to run the model on (e.g., 'cuda:0')
- `--data`: Path to the dataset scp file
- `--level`: Level of feature (frame level or utterance level)

## 2. Training and testing on EmoBox using extracted features

If you want to test our model on other datasets using [EmoBox](https://github.com/emo-box/EmoBox/tree/main). There is also an example provided below, which you can modify to suit your needs:

Use k-fold cross-validation with learning rates (1e-3, 1e-4) and hidden sizes (128, 256):

```bash
cd examples/sb
data=/path/to/your/data_files
lrs=(1e-3 1e-4)               # Learning rate list
hidden_sizes=(128 256)        # Hidden size list
gpus=(0 1 2 3)                # GPU list
task_id=0
declare -A dataset_folds=(
    ["mesd"]=1
)
declare -A dataset_classes=(
    ["mesd"]=6
)
datasets=("mesd")

for dataset in "${datasets[@]}"; do
    folds=${dataset_folds[$dataset]}
    n_classes=${dataset_classes[$dataset]}

    for lr in "${lrs[@]}"; do
        for hidden_size in "${hidden_sizes[@]}"; do
            gpu=${gpus[$task_id % ${#gpus[@]}]}
            export CUDA_VISIBLE_DEVICES=$gpu
            task_number=$((task_id + 1))
            for fold in $(seq 1 $folds); do
                echo "Training fold $fold with lr=$lr, hidden_size=$hidden_size on GPU $gpu, task_number=$task_number, dataset=$dataset..."
                python3 train.py \
                    hparams/data2vec2-large_freeze.yaml \
                    --output_folder /path/to/your/${dataset}-S/fold${fold}_lr${lr}_hidden${hidden_size} \
                    --seed 1234 \
                    --batch_size 32 \
                    --lr $lr \
                    --train_annotation ${data}/${dataset}/fold_${fold}/${dataset}_train_fold_${fold}.json \
                    --test_annotation ${data}/${dataset}/fold_${fold}/${dataset}_test_fold_${fold}.json \
                    --number_of_epochs 100 \
                    --feat_dir /path/to/your/dump_${dataset}-S \
                    --label_map ${data}/${dataset}/label_map.json \
                    --device cuda \
                    --out_n_neurons ${n_classes} \
                    --hidden_size $hidden_size &
            done
            task_id=$((task_id + 1))
        done
    done
done

wait
echo "All training tasks completed."
```