File size: 12,436 Bytes
d0690fd b0d4960 054a419 d0690fd 054a419 d0690fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import pdb
from typing import Tuple
import torch
import torch.nn as nn
from transformers import PreTrainedModel
import argparse
import importlib
import json
import math
import multiprocessing as mp
import os
import time
from argparse import Namespace
from pathlib import Path
# monkey patch to fix issues in msaf
import scipy
import numpy as np
scipy.inf = np.inf
import librosa
import torch
from ema_pytorch import EMA
from loguru import logger
from muq import MuQ
from musicfm.model.musicfm_25hz import MusicFM25Hz
from omegaconf import OmegaConf
from tqdm import tqdm
import torch
import torch.nn as nn
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from configuration_songformer import SongFormerConfig
from model_config import ModelConfig
from model import Model
from omegaconf import OmegaConf
# MUSICFM_HOME_PATH = os.path.join("ckpts", "MusicFM")
MUSICFM_HOME_PATH = "/home/node59_tmpdata3/cbhao/SongFormer_kaiyuan_test/github_test/SongFormer/src/SongFormer/ckpts/MusicFM"
BEFORE_DOWNSAMPLING_FRAME_RATES = 25
AFTER_DOWNSAMPLING_FRAME_RATES = 8.333
DATASET_LABEL = "SongForm-HX-8Class"
DATASET_IDS = [5]
TIME_DUR = 420
INPUT_SAMPLING_RATE = 24000
from dataset.label2id import DATASET_ID_ALLOWED_LABEL_IDS, DATASET_LABEL_TO_DATASET_ID
from postprocessing.functional import postprocess_functional_structure
def rule_post_processing(msa_list):
if len(msa_list) <= 2:
return msa_list
result = msa_list.copy()
while len(result) > 2:
first_duration = result[1][0] - result[0][0]
if first_duration < 1.0 and len(result) > 2:
result[0] = (result[0][0], result[1][1])
result = [result[0]] + result[2:]
else:
break
while len(result) > 2:
last_label_duration = result[-1][0] - result[-2][0]
if last_label_duration < 1.0:
result = result[:-2] + [result[-1]]
else:
break
while len(result) > 2:
if result[0][1] == result[1][1] and result[1][0] <= 10.0:
result = [(result[0][0], result[0][1])] + result[2:]
else:
break
while len(result) > 2:
last_duration = result[-1][0] - result[-2][0]
if result[-2][1] == result[-3][1] and last_duration <= 10.0:
result = result[:-2] + [result[-1]]
else:
break
return result
class SongFormerModel(PreTrainedModel):
config_class = SongFormerConfig
def __init__(self, config: SongFormerConfig):
super().__init__(config)
device = "cpu"
root_dir = os.environ["SONGFORMER_LOCAL_DIR"]
with open(os.path.join(root_dir, "muq_config2.json"), "r") as f:
muq_config_file = OmegaConf.load(f)
# self.muq = MuQ.from_pretrained("OpenMuQ/MuQ-large-msd-iter", device_map=None)
self.muq = MuQ(muq_config_file)
self.musicfm = MusicFM25Hz(
is_flash=False,
stat_path=os.path.join(root_dir, "msd_stats.json"),
# model_path=os.path.join(MUSICFM_HOME_PATH, "pretrained_msd.pt"),
)
self.songformer = Model(ModelConfig())
num_classes = config.num_classes
dataset_id2label_mask = {}
for key, allowed_ids in DATASET_ID_ALLOWED_LABEL_IDS.items():
dataset_id2label_mask[key] = np.ones(config.num_classes, dtype=bool)
dataset_id2label_mask[key][allowed_ids] = False
self.num_classes = num_classes
self.dataset_id2label_mask = dataset_id2label_mask
self.config = config
def forward(self, input):
with torch.no_grad():
INPUT_SAMPLING_RATE = 24000
device = next(self.parameters()).device
# 如果为tensor或者是numpy
if isinstance(input, (torch.Tensor, np.ndarray)):
audio = torch.tensor(input).to(device)
elif os.path.exists(input):
wav, sr = librosa.load(input, sr=INPUT_SAMPLING_RATE)
audio = torch.tensor(wav).to(device)
else:
raise ValueError("input should be a tensor/numpy or a valid file path")
win_size = self.config.win_size
hop_size = self.config.hop_size
num_classes = self.config.num_classes
total_len = (
(audio.shape[0] // INPUT_SAMPLING_RATE) // TIME_DUR
) * TIME_DUR + TIME_DUR
total_frames = math.ceil(total_len * AFTER_DOWNSAMPLING_FRAME_RATES)
logits = {
"function_logits": np.zeros([total_frames, num_classes]),
"boundary_logits": np.zeros([total_frames]),
}
logits_num = {
"function_logits": np.zeros([total_frames, num_classes]),
"boundary_logits": np.zeros([total_frames]),
}
lens = 0
i = 0
while True:
start_idx = i * INPUT_SAMPLING_RATE
end_idx = min((i + win_size) * INPUT_SAMPLING_RATE, audio.shape[-1])
if start_idx >= audio.shape[-1]:
break
if end_idx - start_idx <= 1024:
continue
audio_seg = audio[start_idx:end_idx]
# MuQ embedding
muq_output = self.muq(audio_seg.unsqueeze(0), output_hidden_states=True)
muq_embd_420s = muq_output["hidden_states"][10]
del muq_output
torch.cuda.empty_cache()
# MusicFM embedding
_, musicfm_hidden_states = self.musicfm.get_predictions(
audio_seg.unsqueeze(0)
)
musicfm_embd_420s = musicfm_hidden_states[10]
del musicfm_hidden_states
torch.cuda.empty_cache()
wraped_muq_embd_30s = []
wraped_musicfm_embd_30s = []
for idx_30s in range(i, i + hop_size, 30):
start_idx_30s = idx_30s * INPUT_SAMPLING_RATE
end_idx_30s = min(
(idx_30s + 30) * INPUT_SAMPLING_RATE,
audio.shape[-1],
(i + hop_size) * INPUT_SAMPLING_RATE,
)
if start_idx_30s >= audio.shape[-1]:
break
if end_idx_30s - start_idx_30s <= 1024:
continue
wraped_muq_embd_30s.append(
self.muq(
audio[start_idx_30s:end_idx_30s].unsqueeze(0),
output_hidden_states=True,
)["hidden_states"][10]
)
torch.cuda.empty_cache()
wraped_musicfm_embd_30s.append(
self.musicfm.get_predictions(
audio[start_idx_30s:end_idx_30s].unsqueeze(0)
)[1][10]
)
torch.cuda.empty_cache()
wraped_muq_embd_30s = torch.concatenate(wraped_muq_embd_30s, dim=1)
wraped_musicfm_embd_30s = torch.concatenate(
wraped_musicfm_embd_30s, dim=1
)
all_embds = [
wraped_musicfm_embd_30s,
wraped_muq_embd_30s,
musicfm_embd_420s,
muq_embd_420s,
]
if len(all_embds) > 1:
embd_lens = [x.shape[1] for x in all_embds]
max_embd_len = max(embd_lens)
min_embd_len = min(embd_lens)
if abs(max_embd_len - min_embd_len) > 4:
raise ValueError(
f"Embedding shapes differ too much: {max_embd_len} vs {min_embd_len}"
)
for idx in range(len(all_embds)):
all_embds[idx] = all_embds[idx][:, :min_embd_len, :]
embd = torch.concatenate(all_embds, axis=-1)
dataset_label = DATASET_LABEL
dataset_ids = torch.Tensor(DATASET_IDS).to(device, dtype=torch.long)
msa_info, chunk_logits = self.songformer.infer(
input_embeddings=embd,
dataset_ids=dataset_ids,
label_id_masks=torch.Tensor(
self.dataset_id2label_mask[
DATASET_LABEL_TO_DATASET_ID[dataset_label]
]
)
.to(device, dtype=bool)
.unsqueeze(0)
.unsqueeze(0),
with_logits=True,
)
start_frame = int(i * AFTER_DOWNSAMPLING_FRAME_RATES)
end_frame = start_frame + min(
math.ceil(hop_size * AFTER_DOWNSAMPLING_FRAME_RATES),
chunk_logits["boundary_logits"][0].shape[0],
)
logits["function_logits"][start_frame:end_frame, :] += (
chunk_logits["function_logits"][0].detach().cpu().numpy()
)
logits["boundary_logits"][start_frame:end_frame] = (
chunk_logits["boundary_logits"][0].detach().cpu().numpy()
)
logits_num["function_logits"][start_frame:end_frame, :] += 1
logits_num["boundary_logits"][start_frame:end_frame] += 1
lens += end_frame - start_frame
i += hop_size
logits["function_logits"] /= logits_num["function_logits"]
logits["boundary_logits"] /= logits_num["boundary_logits"]
logits["function_logits"] = torch.from_numpy(
logits["function_logits"][:lens]
).unsqueeze(0)
logits["boundary_logits"] = torch.from_numpy(
logits["boundary_logits"][:lens]
).unsqueeze(0)
msa_infer_output = postprocess_functional_structure(logits, self.config)
assert msa_infer_output[-1][-1] == "end"
if not self.config.no_rule_post_processing:
msa_infer_output = rule_post_processing(msa_infer_output)
msa_json = []
for idx in range(len(msa_infer_output) - 1):
msa_json.append(
{
"label": msa_infer_output[idx][1],
"start": msa_infer_output[idx][0],
"end": msa_infer_output[idx + 1][0],
}
)
return msa_json
@staticmethod
def _fix_state_dict_key_on_load(key: str) -> Tuple[str, bool]:
"""Replace legacy parameter names with their modern equivalents. E.g. beta -> bias, gamma -> weight."""
# ---- begin: ignore muq ----
if key.startswith("muq."):
return key, False
# ---- end ---
# Rename LayerNorm beta & gamma params for some early models ported from Tensorflow (e.g. Bert)
# This rename is logged.
if key.endswith("LayerNorm.beta"):
return key.replace("LayerNorm.beta", "LayerNorm.bias"), True
if key.endswith("LayerNorm.gamma"):
return key.replace("LayerNorm.gamma", "LayerNorm.weight"), True
# Rename weight norm parametrizations to match changes across torch versions.
# Impacts a number of speech/wav2vec models. e.g. Hubert, Wav2Vec2, and others.
# This rename is not logged.
if hasattr(nn.utils.parametrizations, "weight_norm"):
if key.endswith("weight_g"):
return key.replace(
"weight_g", "parametrizations.weight.original0"
), True
if key.endswith("weight_v"):
return key.replace(
"weight_v", "parametrizations.weight.original1"
), True
else:
if key.endswith("parametrizations.weight.original0"):
return key.replace(
"parametrizations.weight.original0", "weight_g"
), True
if key.endswith("parametrizations.weight.original1"):
return key.replace(
"parametrizations.weight.original1", "weight_v"
), True
return key, False
|