# This file contains code adapted from the following sources: # [MIT license] https://github.com/mir-aidj/all-in-one/blob/main/src/allin1/postprocessing/functional.py import numpy as np import torch from .helpers import ( local_maxima, peak_picking, # event_frames_to_time, ) from dataset.label2id import LABEL_TO_ID, ID_TO_LABEL from dataset.custom_types import MsaInfo def event_frames_to_time(frame_rates, boundary: np.array): boundary = np.array(boundary) boundary_times = boundary / frame_rates return boundary_times def postprocess_functional_structure( logits, config, ): # pdb.set_trace() boundary_logits = logits["boundary_logits"] function_logits = logits["function_logits"] assert boundary_logits.shape[0] == 1 and function_logits.shape[0] == 1, ( "Only batch size 1 is supported" ) raw_prob_sections = torch.sigmoid(boundary_logits[0]) raw_prob_functions = torch.softmax(function_logits[0].transpose(0, 1), dim=0) # filter_size=4 * cfg.min_hops_per_beat + 1 prob_sections, _ = local_maxima( raw_prob_sections, filter_size=config.local_maxima_filter_size ) prob_sections = prob_sections.cpu().numpy() prob_functions = raw_prob_functions.cpu().numpy() boundary_candidates = peak_picking( boundary_activation=prob_sections, window_past=int(12 * config.frame_rates), # 原来是fps window_future=int(12 * config.frame_rates), ) boundary = boundary_candidates > 0.0 duration = len(prob_sections) / config.frame_rates pred_boundary_times = event_frames_to_time( frame_rates=config.frame_rates, boundary=np.flatnonzero(boundary) ) if pred_boundary_times[0] != 0: pred_boundary_times = np.insert(pred_boundary_times, 0, 0) if pred_boundary_times[-1] != duration: pred_boundary_times = np.append(pred_boundary_times, duration) pred_boundaries = np.stack([pred_boundary_times[:-1], pred_boundary_times[1:]]).T pred_boundary_indices = np.flatnonzero(boundary) pred_boundary_indices = pred_boundary_indices[pred_boundary_indices > 0] prob_segment_function = np.split(prob_functions, pred_boundary_indices, axis=1) pred_labels = [p.mean(axis=1).argmax().item() for p in prob_segment_function] segments: MsaInfo = [] for (start, end), label in zip(pred_boundaries, pred_labels): segment = (float(start), str(ID_TO_LABEL[label])) segments.append(segment) segments.append((float(pred_boundary_times[-1]), "end")) return segments