--- license: cc-by-nc-4.0 --- ## 👉🏻 WenetSpeech-Yue 👈🏻 **WenetSpeech-Yue**: [Demos](https://aslp-lab.github.io/WenetSpeech-Yue/); [Paper](https://arxiv.org/abs/2509.03959); [Github](https://github.com/ASLP-lab/WenetSpeech-Yue); [HuggingFace](https://huggingface.co/datasets/ASLP-lab/WenetSpeech-Yue) ## Highlight🔥 **WenetSpeech-Yue TTS Models** have been released! This repository contains two versions of the TTS models: 1. **ASLP-lab/Cosyvoice2-Yue**: The base model for Cantonese TTS. 2. **ASLP-lab/Cosyvoice2-Yue-ZoengJyutGaai**: A fine-tuned, higher-quality version for more natural speech generation. ## Install **Clone and install** - Clone the repo ``` sh git clone https://github.com/ASLP-lab/WenetSpeech-Yue.git cd WenetSpeech-Yue/CosyVoice2-Yue ``` - Create Conda env: ``` sh conda create -n cosyvoice python=3.10 conda activate cosyvoice # pynini is required by WeTextProcessing, use conda to install it as it can be executed on all platform. conda install -y -c conda-forge pynini==2.1.5 pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com ``` **Model download** ``` python from huggingface_hub import snapshot_download snapshot_download('ASLP-lab/Cosyvoice2-Yue', local_dir='pretrained_models/Cosyvoice2-Yue') snapshot_download('ASLP-lab/Cosyvoice2-Yue-ZoengJyutGaai', local_dir='pretrained_models/Cosyvoice2-Yue-ZoengJyutGaai') ``` **Usage** ``` python import sys sys.path.append('third_party/Matcha-TTS') from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2 from cosyvoice.utils.file_utils import load_wav import torchaudio import opencc # s2t converter = opencc.OpenCC('s2t.json') cosyvoice_base = CosyVoice2( 'pretrained_models/Cosyvoice2-Yue', load_jit=False, load_trt=False, load_vllm=False, fp16=False ) cosyvoice_zjg = CosyVoice2( 'pretrained_models/Cosyvoice2-Yue-ZoengJyutGaai', load_jit=False, load_trt=False, load_vllm=False, fp16=False ) prompt_speech_16k = load_wav('asset/sg_017_090.wav', 16000) text = '收到朋友从远方寄嚟嘅生日礼物,嗰份意外嘅惊喜同埋深深嘅祝福令我心入面充满咗甜蜜嘅快乐,笑容好似花咁绽放。' text = converter.convert(text) for i, j in enumerate(cosyvoice_base.inference_instruct2(text, '用粤语说这句话', prompt_speech_16k, stream=False)): torchaudio.save('base_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate) for i, j in enumerate(cosyvoice_zjg.inference_instruct2(text, '用粤语说这句话', prompt_speech_16k, stream=False)): torchaudio.save('zjg_{}.wav'.format(i), j['tts_speech'], cosyvoice.sample_rate) ``` ## Contact If you are interested in leaving a message to our research team, feel free to email lhli@mail.nwpu.edu.cn or gzhao@mail.nwpu.edu.cn.