AT commited on
Commit
23e0d68
·
1 Parent(s): 1a57ee3

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -82
README.md CHANGED
@@ -14,7 +14,7 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.0047
18
 
19
  ## Model description
20
 
@@ -45,91 +45,91 @@ The following hyperparameters were used during training:
45
 
46
  | Training Loss | Epoch | Step | Validation Loss |
47
  |:-------------:|:-----:|:----:|:---------------:|
48
- | 0.079 | 1.0 | 24 | 0.0748 |
49
- | 0.045 | 2.0 | 48 | 0.0507 |
50
- | 0.0253 | 3.0 | 72 | 0.0494 |
51
- | 0.0285 | 4.0 | 96 | 0.0469 |
52
- | 0.0189 | 5.0 | 120 | 0.0319 |
53
- | 0.0014 | 6.0 | 144 | 0.0220 |
54
- | 0.0023 | 7.0 | 168 | 0.0108 |
55
- | 0.0012 | 8.0 | 192 | 0.0079 |
56
- | 0.0067 | 9.0 | 216 | 0.0061 |
57
- | 0.0006 | 10.0 | 240 | 0.0099 |
58
- | 0.0004 | 11.0 | 264 | 0.0067 |
59
- | 0.0007 | 12.0 | 288 | 0.0060 |
60
- | 0.0005 | 13.0 | 312 | 0.0050 |
61
- | 0.0005 | 14.0 | 336 | 0.0050 |
62
- | 0.0005 | 15.0 | 360 | 0.0046 |
63
- | 0.0001 | 16.0 | 384 | 0.0052 |
64
- | 0.0001 | 17.0 | 408 | 0.0047 |
65
- | 0.0001 | 18.0 | 432 | 0.0046 |
66
- | 0.0001 | 19.0 | 456 | 0.0050 |
67
- | 0.0001 | 20.0 | 480 | 0.0046 |
68
- | 0.0001 | 21.0 | 504 | 0.0046 |
69
- | 0.0007 | 22.0 | 528 | 0.0046 |
70
- | 0.0001 | 23.0 | 552 | 0.0046 |
71
- | 0.0001 | 24.0 | 576 | 0.0049 |
72
- | 0.0001 | 25.0 | 600 | 0.0043 |
73
- | 0.0001 | 26.0 | 624 | 0.0046 |
74
- | 0.0 | 27.0 | 648 | 0.0044 |
75
- | 0.0001 | 28.0 | 672 | 0.0045 |
76
- | 0.0001 | 29.0 | 696 | 0.0045 |
77
- | 0.0002 | 30.0 | 720 | 0.0044 |
78
- | 0.0 | 31.0 | 744 | 0.0044 |
79
- | 0.0001 | 32.0 | 768 | 0.0044 |
80
- | 0.0 | 33.0 | 792 | 0.0044 |
81
- | 0.0001 | 34.0 | 816 | 0.0050 |
82
- | 0.0001 | 35.0 | 840 | 0.0050 |
83
- | 0.0002 | 36.0 | 864 | 0.0049 |
84
- | 0.0 | 37.0 | 888 | 0.0048 |
85
- | 0.0 | 38.0 | 912 | 0.0054 |
86
- | 0.0 | 39.0 | 936 | 0.0048 |
87
- | 0.0 | 40.0 | 960 | 0.0047 |
88
- | 0.0002 | 41.0 | 984 | 0.0048 |
89
- | 0.0 | 42.0 | 1008 | 0.0068 |
90
- | 0.0 | 43.0 | 1032 | 0.0051 |
91
- | 0.0002 | 44.0 | 1056 | 0.0049 |
92
- | 0.0 | 45.0 | 1080 | 0.0049 |
93
- | 0.0 | 46.0 | 1104 | 0.0048 |
94
- | 0.0 | 47.0 | 1128 | 0.0046 |
95
- | 0.0 | 48.0 | 1152 | 0.0046 |
96
- | 0.0 | 49.0 | 1176 | 0.0048 |
97
- | 0.0 | 50.0 | 1200 | 0.0049 |
98
- | 0.0 | 51.0 | 1224 | 0.0047 |
99
- | 0.0 | 52.0 | 1248 | 0.0046 |
100
- | 0.0001 | 53.0 | 1272 | 0.0046 |
101
- | 0.0 | 54.0 | 1296 | 0.0045 |
102
- | 0.0 | 55.0 | 1320 | 0.0045 |
103
- | 0.0 | 56.0 | 1344 | 0.0046 |
104
- | 0.0 | 57.0 | 1368 | 0.0046 |
105
- | 0.0 | 58.0 | 1392 | 0.0046 |
106
- | 0.0 | 59.0 | 1416 | 0.0046 |
107
- | 0.0 | 60.0 | 1440 | 0.0046 |
108
- | 0.0 | 61.0 | 1464 | 0.0047 |
109
- | 0.0 | 62.0 | 1488 | 0.0047 |
110
- | 0.0 | 63.0 | 1512 | 0.0047 |
111
- | 0.0 | 64.0 | 1536 | 0.0046 |
112
- | 0.0 | 65.0 | 1560 | 0.0045 |
113
- | 0.0 | 66.0 | 1584 | 0.0045 |
114
- | 0.0 | 67.0 | 1608 | 0.0046 |
115
- | 0.0 | 68.0 | 1632 | 0.0047 |
116
- | 0.0 | 69.0 | 1656 | 0.0048 |
117
- | 0.0001 | 70.0 | 1680 | 0.0048 |
118
- | 0.0 | 71.0 | 1704 | 0.0048 |
119
- | 0.0 | 72.0 | 1728 | 0.0047 |
120
- | 0.0001 | 73.0 | 1752 | 0.0049 |
121
- | 0.0 | 74.0 | 1776 | 0.0048 |
122
- | 0.0 | 75.0 | 1800 | 0.0048 |
123
- | 0.0 | 76.0 | 1824 | 0.0047 |
124
- | 0.0 | 77.0 | 1848 | 0.0047 |
125
- | 0.0 | 78.0 | 1872 | 0.0047 |
126
- | 0.0 | 79.0 | 1896 | 0.0047 |
127
- | 0.0 | 80.0 | 1920 | 0.0047 |
128
 
129
 
130
  ### Framework versions
131
 
132
- - Transformers 4.14.1
133
  - Pytorch 1.10.0+cu111
134
  - Datasets 1.17.0
135
  - Tokenizers 0.10.3
 
14
 
15
  This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 0.0003
18
 
19
  ## Model description
20
 
 
45
 
46
  | Training Loss | Epoch | Step | Validation Loss |
47
  |:-------------:|:-----:|:----:|:---------------:|
48
+ | 0.0439 | 1.0 | 30 | 0.0535 |
49
+ | 0.0415 | 2.0 | 60 | 0.0434 |
50
+ | 0.0289 | 3.0 | 90 | 0.0293 |
51
+ | 0.0046 | 4.0 | 120 | 0.0171 |
52
+ | 0.0021 | 5.0 | 150 | 0.0066 |
53
+ | 0.0006 | 6.0 | 180 | 0.0051 |
54
+ | 0.0003 | 7.0 | 210 | 0.0032 |
55
+ | 0.0006 | 8.0 | 240 | 0.0024 |
56
+ | 0.0031 | 9.0 | 270 | 0.0040 |
57
+ | 0.0002 | 10.0 | 300 | 0.0031 |
58
+ | 0.0001 | 11.0 | 330 | 0.0016 |
59
+ | 0.0038 | 12.0 | 360 | 0.0015 |
60
+ | 0.0001 | 13.0 | 390 | 0.0018 |
61
+ | 0.0001 | 14.0 | 420 | 0.0020 |
62
+ | 0.0001 | 15.0 | 450 | 0.0023 |
63
+ | 0.0001 | 16.0 | 480 | 0.0019 |
64
+ | 0.0001 | 17.0 | 510 | 0.0027 |
65
+ | 0.0001 | 18.0 | 540 | 0.0024 |
66
+ | 0.0001 | 19.0 | 570 | 0.0010 |
67
+ | 0.0001 | 20.0 | 600 | 0.0011 |
68
+ | 0.0001 | 21.0 | 630 | 0.0012 |
69
+ | 0.0001 | 22.0 | 660 | 0.0012 |
70
+ | 0.0001 | 23.0 | 690 | 0.0012 |
71
+ | 0.0001 | 24.0 | 720 | 0.0011 |
72
+ | 0.0 | 25.0 | 750 | 0.0013 |
73
+ | 0.0002 | 26.0 | 780 | 0.0006 |
74
+ | 0.0001 | 27.0 | 810 | 0.0012 |
75
+ | 0.0001 | 28.0 | 840 | 0.0007 |
76
+ | 0.0001 | 29.0 | 870 | 0.0008 |
77
+ | 0.0 | 30.0 | 900 | 0.0009 |
78
+ | 0.0001 | 31.0 | 930 | 0.0009 |
79
+ | 0.0001 | 32.0 | 960 | 0.0006 |
80
+ | 0.0 | 33.0 | 990 | 0.0005 |
81
+ | 0.0 | 34.0 | 1020 | 0.0005 |
82
+ | 0.0 | 35.0 | 1050 | 0.0005 |
83
+ | 0.0001 | 36.0 | 1080 | 0.0008 |
84
+ | 0.0001 | 37.0 | 1110 | 0.0006 |
85
+ | 0.0001 | 38.0 | 1140 | 0.0005 |
86
+ | 0.0 | 39.0 | 1170 | 0.0007 |
87
+ | 0.0001 | 40.0 | 1200 | 0.0010 |
88
+ | 0.0002 | 41.0 | 1230 | 0.0009 |
89
+ | 0.0 | 42.0 | 1260 | 0.0007 |
90
+ | 0.0 | 43.0 | 1290 | 0.0005 |
91
+ | 0.0001 | 44.0 | 1320 | 0.0005 |
92
+ | 0.0 | 45.0 | 1350 | 0.0005 |
93
+ | 0.0 | 46.0 | 1380 | 0.0005 |
94
+ | 0.0 | 47.0 | 1410 | 0.0005 |
95
+ | 0.0 | 48.0 | 1440 | 0.0005 |
96
+ | 0.0001 | 49.0 | 1470 | 0.0005 |
97
+ | 0.0 | 50.0 | 1500 | 0.0006 |
98
+ | 0.0 | 51.0 | 1530 | 0.0006 |
99
+ | 0.0 | 52.0 | 1560 | 0.0005 |
100
+ | 0.0 | 53.0 | 1590 | 0.0006 |
101
+ | 0.0 | 54.0 | 1620 | 0.0006 |
102
+ | 0.0 | 55.0 | 1650 | 0.0006 |
103
+ | 0.0 | 56.0 | 1680 | 0.0007 |
104
+ | 0.0 | 57.0 | 1710 | 0.0007 |
105
+ | 0.0 | 58.0 | 1740 | 0.0007 |
106
+ | 0.0 | 59.0 | 1770 | 0.0007 |
107
+ | 0.0 | 60.0 | 1800 | 0.0006 |
108
+ | 0.0 | 61.0 | 1830 | 0.0007 |
109
+ | 0.0 | 62.0 | 1860 | 0.0006 |
110
+ | 0.0 | 63.0 | 1890 | 0.0006 |
111
+ | 0.0 | 64.0 | 1920 | 0.0003 |
112
+ | 0.0 | 65.0 | 1950 | 0.0003 |
113
+ | 0.0 | 66.0 | 1980 | 0.0003 |
114
+ | 0.0 | 67.0 | 2010 | 0.0003 |
115
+ | 0.0 | 68.0 | 2040 | 0.0003 |
116
+ | 0.0 | 69.0 | 2070 | 0.0003 |
117
+ | 0.0 | 70.0 | 2100 | 0.0003 |
118
+ | 0.0 | 71.0 | 2130 | 0.0003 |
119
+ | 0.0 | 72.0 | 2160 | 0.0003 |
120
+ | 0.0 | 73.0 | 2190 | 0.0003 |
121
+ | 0.0 | 74.0 | 2220 | 0.0003 |
122
+ | 0.0 | 75.0 | 2250 | 0.0003 |
123
+ | 0.0 | 76.0 | 2280 | 0.0003 |
124
+ | 0.0 | 77.0 | 2310 | 0.0003 |
125
+ | 0.0 | 78.0 | 2340 | 0.0003 |
126
+ | 0.0 | 79.0 | 2370 | 0.0003 |
127
+ | 0.0 | 80.0 | 2400 | 0.0003 |
128
 
129
 
130
  ### Framework versions
131
 
132
+ - Transformers 4.15.0
133
  - Pytorch 1.10.0+cu111
134
  - Datasets 1.17.0
135
  - Tokenizers 0.10.3