--- license: bsd-3-clause language: - en base_model: - deeplabv3plus_mobilenet pipeline_tag: image-segmentation tags: - deeplabv3plus --- # DeepLabv3Plus This version of deeplabv3plus_mobilenet has been converted to run on the Axera NPU using **w8a16** quantization. Compatible with Pulsar2 version: 5.0-patch1 ## Convert tools links: For those who are interested in model conversion, you can try to export axmodel through - [The repo of original](https://github.com/VainF/DeepLabV3Plus-Pytorch.git) - [Pulsar2 Link, How to Convert ONNX to axmodel](https://pulsar2-docs.readthedocs.io/en/latest/pulsar2/introduction.html) ## Support Platform - AX650 - [M4N-Dock(爱芯派Pro)](https://wiki.sipeed.com/hardware/zh/maixIV/m4ndock/m4ndock.html) - [M.2 Accelerator card](https://axcl-docs.readthedocs.io/zh-cn/latest/doc_guide_hardware.html) - AX637 |Chips|Models |Time| |--|--|--| |AX650|deeplabv3plus_mobilenet_u16|13.4 ms | |AX637|deeplabv3plus_mobilenet_u16|39.4 ms | ## How to use Download all files from this repository to the device ### python env requirement #### pyaxengine https://github.com/AXERA-TECH/pyaxengine ``` wget https://github.com/AXERA-TECH/pyaxengine/releases/download/0.1.3.rc2/axengine-0.1.3-py3-none-any.whl pip install axengine-0.1.3-py3-none-any.whl ``` #### others Maybe None. #### Inference with AX650 Host, such as M4N-Dock(爱芯派Pro) Input image: ![](samples/1_image.png) run ``` python3 infer.py --img samples/1_image.png --model models-ax637/deeplabv3plus_mobilenet_u16.axmodel ``` Output image: ![](output-ax.png)