FG-CLIP / run_axmodel.py
jordan0811's picture
Upload run_axmodel.py with huggingface_hub
2685b0c verified
raw
history blame
2.91 kB
import numpy as np
from PIL import Image
import axengine as ort
import torch
import os
from transformers import (
AutoImageProcessor,
AutoTokenizer,
)
def determine_max_value(image):
w,h = image.size
max_val = (w//16)*(h//16)
if max_val > 784:
return 1024
elif max_val > 576:
return 784
elif max_val > 256:
return 576
elif max_val > 128:
return 256
else:
return 128
if __name__ == "__main__":
image_path = "bedroom.jpg"
model_root = "/root/wangjian/hf_cache/fg-clip2-base"
image_encoder_path = "image_encoder.axmodel"
text_encoder_path = "text_encoder.axmodel"
onnx_image_encoder = ort.InferenceSession(image_encoder_path)
onnx_text_encoder = ort.InferenceSession(text_encoder_path)
image = Image.open(image_path).convert("RGB")
image_processor = AutoImageProcessor.from_pretrained(model_root)
tokenizer = AutoTokenizer.from_pretrained(model_root)
image_input = image_processor(images=image, max_num_patches=determine_max_value(image), return_tensors="pt")
captions = [
"一个简约风格的卧室角落,黑色金属衣架上挂着多件米色和白色的衣物,下方架子放着两双浅色鞋子,旁边是一盆绿植,左侧可见一张铺有白色床单和灰色枕头的床。",
"一个简约风格的卧室角落,黑色金属衣架上挂着多件红色和蓝色的衣物,下方架子放着两双黑色高跟鞋,旁边是一盆绿植,左侧可见一张铺有白色床单和灰色枕头的床。",
"一个简约风格的卧室角落,黑色金属衣架上挂着多件米色和白色的衣物,下方架子放着两双运动鞋,旁边是一盆仙人掌,左侧可见一张铺有白色床单和灰色枕头的床。",
"一个繁忙的街头市场,摊位上摆满水果,背景是高楼大厦,人们在喧闹中购物。"
]
captions = [caption.lower() for caption in captions]
caption_input = tokenizer(captions, padding="max_length", max_length=196, truncation=True, return_tensors="pt")
image_feature = onnx_image_encoder.run(None, {
"pixel_values": image_input["pixel_values"].numpy().astype(np.float32),
"pixel_attention_mask": image_input["pixel_attention_mask"].numpy().astype(np.int32)
})[0]
text_feature = []
for c in caption_input["input_ids"]:
tmp_text_feature = onnx_text_encoder.run(None, {
"input_ids": c[None].numpy().astype(np.int32),
})[0]
text_feature.append(tmp_text_feature)
text_feature = np.concatenate(text_feature, axis=0)
logits_per_image = image_feature @ text_feature.T
logit_scale, logit_bias = 4.75, -16.75
logits_per_image = logits_per_image * np.exp(logit_scale) + logit_bias
print("Logits per image:", torch.from_numpy(logits_per_image).softmax(dim=-1))