jordan0811 commited on
Commit
d092344
Β·
verified Β·
1 Parent(s): 4e13c07

Delete files modeling_fgclip2.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. modeling_fgclip2.py +0 -274
modeling_fgclip2.py DELETED
@@ -1,274 +0,0 @@
1
- # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
- # This file was automatically generated from src/transformers/models/fgclip2/modular_fgclip2.py.
3
- # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
- # the file from the modular. If any change should be done, please apply the change to the
5
- # modular_fgclip2.py file directly. One of our CI enforces this.
6
- # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
- # coding=utf-8
8
- # Copyright 2025 The HuggingFace Inc. team.
9
- #
10
- # Licensed under the Apache License, Version 2.0 (the "License");
11
- # you may not use this file except in compliance with the License.
12
- # You may obtain a copy of the License at
13
- #
14
- # http://www.apache.org/licenses/LICENSE-2.0
15
- #
16
- # Unless required by applicable law or agreed to in writing, software
17
- # distributed under the License is distributed on an "AS IS" BASIS,
18
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
- # See the License for the specific language governing permissions and
20
- # limitations under the License.
21
- from transformers.configuration_utils import PretrainedConfig
22
- from transformers.utils import logging
23
-
24
-
25
- logger = logging.get_logger(__name__)
26
-
27
-
28
- class Fgclip2TextConfig(PretrainedConfig):
29
- r"""
30
- This is the configuration class to store the configuration of a [`Fgclip2TextModel`]. It is used to instantiate a
31
- Fgclip2 text encoder according to the specified arguments, defining the model architecture. Instantiating a
32
- configuration with the defaults will yield a similar configuration to that of the text encoder of the Fgclip2
33
- [qihoo360/fg-clip2-base](https://huggingface.co/qihoo360/fg-clip2-base) architecture.
34
-
35
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
- documentation from [`PretrainedConfig`] for more information.
37
-
38
- Args:
39
- vocab_size (`int`, *optional*, defaults to 32000):
40
- Vocabulary size of the Fgclip2 text model. Defines the number of different tokens that can be represented by
41
- the `inputs_ids` passed when calling [`Fgclip2Model`].
42
- hidden_size (`int`, *optional*, defaults to 768):
43
- Dimensionality of the encoder layers and the pooler layer.
44
- intermediate_size (`int`, *optional*, defaults to 3072):
45
- Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
46
- num_hidden_layers (`int`, *optional*, defaults to 12):
47
- Number of hidden layers in the Transformer encoder.
48
- num_attention_heads (`int`, *optional*, defaults to 12):
49
- Number of attention heads for each attention layer in the Transformer encoder.
50
- max_position_embeddings (`int`, *optional*, defaults to 64):
51
- The maximum sequence length that this model might ever be used with. Typically set this to something large
52
- just in case (e.g., 512 or 1024 or 2048).
53
- hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
54
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
55
- `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
56
- layer_norm_eps (`float`, *optional*, defaults to 1e-06):
57
- The epsilon used by the layer normalization layers.
58
- attention_dropout (`float`, *optional*, defaults to 0.0):
59
- The dropout ratio for the attention probabilities.
60
- pad_token_id (`int`, *optional*, defaults to 1):
61
- The id of the padding token in the vocabulary.
62
- bos_token_id (`int`, *optional*, defaults to 49406):
63
- The id of the beginning-of-sequence token in the vocabulary.
64
- eos_token_id (`int`, *optional*, defaults to 49407):
65
- The id of the end-of-sequence token in the vocabulary.
66
- projection_size (`int`, *optional*, defaults to `hidden_size`):
67
- The size of the projection head.
68
- keep_len (`int`, *optional*, defaults to 20):
69
- When processing long texts, the retained tokens are used for handling short text lengths.
70
- For details, please refer to the FG-CLIP 'https://arxiv.org/abs/2505.05071' paper.
71
- longtext_len (`int`, *optional*, defaults to 196):
72
- The maximum number of tokens in long texts that can be processed
73
-
74
-
75
- Example:
76
-
77
- ```python
78
- >>> from transformers import Fgclip2TextConfig, Fgclip2TextModel
79
-
80
- >>> # Initializing a Fgclip2TextConfig with qihoo/fgclip2-base-patch16 style configuration
81
- >>> configuration = Fgclip2TextConfig()
82
-
83
- >>> # Initializing a Fgclip2TextModel (with random weights) from the qihoo/fgclip2-base-patch16 style configuration
84
- >>> model = Fgclip2TextModel(configuration)
85
-
86
- >>> # Accessing the model configuration
87
- >>> configuration = model.config
88
- ```"""
89
-
90
- model_type = "fgclip2_text_model"
91
- base_config_key = "text_config"
92
-
93
- def __init__(
94
- self,
95
- vocab_size=32000,
96
- hidden_size=768,
97
- intermediate_size=3072,
98
- num_hidden_layers=12,
99
- num_attention_heads=12,
100
- max_position_embeddings=64,
101
- hidden_act="gelu_pytorch_tanh",
102
- layer_norm_eps=1e-6,
103
- attention_dropout=0.0,
104
- # This differs from `CLIPTokenizer`'s default and from openai/fgclip2
105
- # See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
106
- pad_token_id=1,
107
- bos_token_id=49406,
108
- eos_token_id=49407,
109
- projection_size=None,
110
- keep_len=20,
111
- longtext_len=196,
112
- **kwargs,
113
- ):
114
- super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
115
-
116
- self.vocab_size = vocab_size
117
- self.hidden_size = hidden_size
118
- self.intermediate_size = intermediate_size
119
- self.num_hidden_layers = num_hidden_layers
120
- self.num_attention_heads = num_attention_heads
121
- self.max_position_embeddings = max_position_embeddings
122
- self.layer_norm_eps = layer_norm_eps
123
- self.hidden_act = hidden_act
124
- self.attention_dropout = attention_dropout
125
- self.projection_size = projection_size if projection_size is not None else hidden_size
126
- self.keep_len = keep_len
127
- self.longtext_len = longtext_len
128
-
129
-
130
- class Fgclip2VisionConfig(PretrainedConfig):
131
- r"""
132
- This is the configuration class to store the configuration of a [`Fgclip2VisionModel`]. It is used to instantiate a
133
- Fgclip2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
134
- configuration with the defaults will yield a similar configuration to that of the vision encoder of the Fgclip2
135
- [qihoo/fgclip2-base-patch16](https://huggingface.co/qihoo/fgclip2-base-patch16) architecture.
136
-
137
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
138
- documentation from [`PretrainedConfig`] for more information.
139
-
140
- Args:
141
- hidden_size (`int`, *optional*, defaults to 768):
142
- Dimensionality of the encoder layers and the pooler layer.
143
- intermediate_size (`int`, *optional*, defaults to 3072):
144
- Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
145
- num_hidden_layers (`int`, *optional*, defaults to 12):
146
- Number of hidden layers in the Transformer encoder.
147
- num_attention_heads (`int`, *optional*, defaults to 12):
148
- Number of attention heads for each attention layer in the Transformer encoder.
149
- num_channels (`int`, *optional*, defaults to 3):
150
- Number of channels in the input images.
151
- num_patches (`int`, *optional*, defaults to 256):
152
- The number of patches in the image with the size of (`patch_size`, `patch_size`).
153
- The image is resized to fill maximum of this number of patches, and to preserve
154
- the aspect ratio. In case the resulted number of patches is lower, the image is
155
- padded in "patch" dimension.
156
- patch_size (`int`, *optional*, defaults to 16):
157
- The size (resolution) of each patch.
158
- hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
159
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
160
- `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
161
- layer_norm_eps (`float`, *optional*, defaults to 1e-06):
162
- The epsilon used by the layer normalization layers.
163
- attention_dropout (`float`, *optional*, defaults to 0.0):
164
- The dropout ratio for the attention probabilities.
165
-
166
- Example:
167
-
168
- ```python
169
- >>> from transformers import Fgclip2VisionConfig, Fgclip2VisionModel
170
-
171
- >>> # Initializing a Fgclip2VisionConfig with qihoo/fgclip2-base-patch16 style configuration
172
- >>> configuration = Fgclip2VisionConfig()
173
-
174
- >>> # Initializing a Fgclip2VisionModel (with random weights) from the qihoo/fgclip2-base-patch16 style configuration
175
- >>> model = Fgclip2VisionModel(configuration)
176
-
177
- >>> # Accessing the model configuration
178
- >>> configuration = model.config
179
- ```"""
180
-
181
- model_type = "fgclip2_vision_model"
182
- base_config_key = "vision_config"
183
-
184
- def __init__(
185
- self,
186
- hidden_size=768,
187
- intermediate_size=3072,
188
- num_hidden_layers=12,
189
- num_attention_heads=12,
190
- num_channels=3,
191
- num_patches=256,
192
- patch_size=16,
193
- hidden_act="gelu_pytorch_tanh",
194
- layer_norm_eps=1e-6,
195
- attention_dropout=0.0,
196
- **kwargs,
197
- ):
198
- super().__init__(**kwargs)
199
-
200
- self.hidden_size = hidden_size
201
- self.intermediate_size = intermediate_size
202
- self.num_hidden_layers = num_hidden_layers
203
- self.num_attention_heads = num_attention_heads
204
- self.num_channels = num_channels
205
- self.patch_size = patch_size
206
- self.attention_dropout = attention_dropout
207
- self.layer_norm_eps = layer_norm_eps
208
- self.hidden_act = hidden_act
209
- self.num_patches = num_patches
210
-
211
-
212
- class Fgclip2Config(PretrainedConfig):
213
- r"""
214
- [`Fgclip2Config`] is the configuration class to store the configuration of a [`Fgclip2Model`]. It is used to
215
- instantiate a Fgclip2 model according to the specified arguments, defining the text model and vision model configs.
216
- Instantiating a configuration with the defaults will yield a similar configuration to that of the Fgclip2
217
- [qihoo/fgclip2-base-patch16](https://huggingface.co/qihoo/fgclip2-base-patch16) architecture.
218
-
219
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
220
- documentation from [`PretrainedConfig`] for more information.
221
-
222
- Args:
223
- text_config (`dict`, *optional*):
224
- Dictionary of configuration options used to initialize [`Fgclip2TextConfig`].
225
- vision_config (`dict`, *optional*):
226
- Dictionary of configuration options used to initialize [`Fgclip2VisionConfig`].
227
- kwargs (*optional*):
228
- Dictionary of keyword arguments.
229
-
230
- Example:
231
-
232
- ```python
233
- >>> from transformers import Fgclip2Config, Fgclip2Model
234
-
235
- >>> # Initializing a Fgclip2Config with qihoo/fgclip2-base-patch16 style configuration
236
- >>> configuration = Fgclip2Config()
237
-
238
- >>> # Initializing a Fgclip2Model (with random weights) from the qihoo/fgclip2-base-patch16 style configuration
239
- >>> model = Fgclip2Model(configuration)
240
-
241
- >>> # Accessing the model configuration
242
- >>> configuration = model.config
243
-
244
- >>> # We can also initialize a Fgclip2Config from a Fgclip2TextConfig and a Fgclip2VisionConfig
245
- >>> from transformers import Fgclip2TextConfig, Fgclip2VisionConfig
246
-
247
- >>> # Initializing a Fgclip2Text and Fgclip2Vision configuration
248
- >>> config_text = Fgclip2TextConfig()
249
- >>> config_vision = Fgclip2VisionConfig()
250
-
251
- >>> config = Fgclip2Config.from_text_vision_configs(config_text, config_vision)
252
- ```"""
253
-
254
- model_type = "fgclip2"
255
- sub_configs = {"text_config": Fgclip2TextConfig, "vision_config": Fgclip2VisionConfig}
256
-
257
- def __init__(self, text_config=None, vision_config=None, **kwargs):
258
- super().__init__(**kwargs)
259
-
260
- if text_config is None:
261
- text_config = {}
262
- logger.info("`text_config` is `None`. Initializing the `Fgclip2TextConfig` with default values.")
263
-
264
- if vision_config is None:
265
- vision_config = {}
266
- logger.info("`vision_config` is `None`. initializing the `Fgclip2VisionConfig` with default values.")
267
-
268
- self.text_config = Fgclip2TextConfig(**text_config)
269
- self.vision_config = Fgclip2VisionConfig(**vision_config)
270
-
271
- self.initializer_factor = 1.0
272
-
273
-
274
- __all__ = ["Fgclip2Config", "Fgclip2TextConfig", "Fgclip2VisionConfig"]