Delete files modeling_fgclip2.py with huggingface_hub
Browse files- modeling_fgclip2.py +0 -274
modeling_fgclip2.py
DELETED
|
@@ -1,274 +0,0 @@
|
|
| 1 |
-
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨
|
| 2 |
-
# This file was automatically generated from src/transformers/models/fgclip2/modular_fgclip2.py.
|
| 3 |
-
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
| 4 |
-
# the file from the modular. If any change should be done, please apply the change to the
|
| 5 |
-
# modular_fgclip2.py file directly. One of our CI enforces this.
|
| 6 |
-
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨
|
| 7 |
-
# coding=utf-8
|
| 8 |
-
# Copyright 2025 The HuggingFace Inc. team.
|
| 9 |
-
#
|
| 10 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 11 |
-
# you may not use this file except in compliance with the License.
|
| 12 |
-
# You may obtain a copy of the License at
|
| 13 |
-
#
|
| 14 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 15 |
-
#
|
| 16 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 17 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 18 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 19 |
-
# See the License for the specific language governing permissions and
|
| 20 |
-
# limitations under the License.
|
| 21 |
-
from transformers.configuration_utils import PretrainedConfig
|
| 22 |
-
from transformers.utils import logging
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
logger = logging.get_logger(__name__)
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
class Fgclip2TextConfig(PretrainedConfig):
|
| 29 |
-
r"""
|
| 30 |
-
This is the configuration class to store the configuration of a [`Fgclip2TextModel`]. It is used to instantiate a
|
| 31 |
-
Fgclip2 text encoder according to the specified arguments, defining the model architecture. Instantiating a
|
| 32 |
-
configuration with the defaults will yield a similar configuration to that of the text encoder of the Fgclip2
|
| 33 |
-
[qihoo360/fg-clip2-base](https://huggingface.co/qihoo360/fg-clip2-base) architecture.
|
| 34 |
-
|
| 35 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 36 |
-
documentation from [`PretrainedConfig`] for more information.
|
| 37 |
-
|
| 38 |
-
Args:
|
| 39 |
-
vocab_size (`int`, *optional*, defaults to 32000):
|
| 40 |
-
Vocabulary size of the Fgclip2 text model. Defines the number of different tokens that can be represented by
|
| 41 |
-
the `inputs_ids` passed when calling [`Fgclip2Model`].
|
| 42 |
-
hidden_size (`int`, *optional*, defaults to 768):
|
| 43 |
-
Dimensionality of the encoder layers and the pooler layer.
|
| 44 |
-
intermediate_size (`int`, *optional*, defaults to 3072):
|
| 45 |
-
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 46 |
-
num_hidden_layers (`int`, *optional*, defaults to 12):
|
| 47 |
-
Number of hidden layers in the Transformer encoder.
|
| 48 |
-
num_attention_heads (`int`, *optional*, defaults to 12):
|
| 49 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
| 50 |
-
max_position_embeddings (`int`, *optional*, defaults to 64):
|
| 51 |
-
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 52 |
-
just in case (e.g., 512 or 1024 or 2048).
|
| 53 |
-
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
| 54 |
-
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 55 |
-
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
| 56 |
-
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 57 |
-
The epsilon used by the layer normalization layers.
|
| 58 |
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 59 |
-
The dropout ratio for the attention probabilities.
|
| 60 |
-
pad_token_id (`int`, *optional*, defaults to 1):
|
| 61 |
-
The id of the padding token in the vocabulary.
|
| 62 |
-
bos_token_id (`int`, *optional*, defaults to 49406):
|
| 63 |
-
The id of the beginning-of-sequence token in the vocabulary.
|
| 64 |
-
eos_token_id (`int`, *optional*, defaults to 49407):
|
| 65 |
-
The id of the end-of-sequence token in the vocabulary.
|
| 66 |
-
projection_size (`int`, *optional*, defaults to `hidden_size`):
|
| 67 |
-
The size of the projection head.
|
| 68 |
-
keep_len (`int`, *optional*, defaults to 20):
|
| 69 |
-
When processing long texts, the retained tokens are used for handling short text lengths.
|
| 70 |
-
For details, please refer to the FG-CLIP 'https://arxiv.org/abs/2505.05071' paper.
|
| 71 |
-
longtext_len (`int`, *optional*, defaults to 196):
|
| 72 |
-
The maximum number of tokens in long texts that can be processed
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
Example:
|
| 76 |
-
|
| 77 |
-
```python
|
| 78 |
-
>>> from transformers import Fgclip2TextConfig, Fgclip2TextModel
|
| 79 |
-
|
| 80 |
-
>>> # Initializing a Fgclip2TextConfig with qihoo/fgclip2-base-patch16 style configuration
|
| 81 |
-
>>> configuration = Fgclip2TextConfig()
|
| 82 |
-
|
| 83 |
-
>>> # Initializing a Fgclip2TextModel (with random weights) from the qihoo/fgclip2-base-patch16 style configuration
|
| 84 |
-
>>> model = Fgclip2TextModel(configuration)
|
| 85 |
-
|
| 86 |
-
>>> # Accessing the model configuration
|
| 87 |
-
>>> configuration = model.config
|
| 88 |
-
```"""
|
| 89 |
-
|
| 90 |
-
model_type = "fgclip2_text_model"
|
| 91 |
-
base_config_key = "text_config"
|
| 92 |
-
|
| 93 |
-
def __init__(
|
| 94 |
-
self,
|
| 95 |
-
vocab_size=32000,
|
| 96 |
-
hidden_size=768,
|
| 97 |
-
intermediate_size=3072,
|
| 98 |
-
num_hidden_layers=12,
|
| 99 |
-
num_attention_heads=12,
|
| 100 |
-
max_position_embeddings=64,
|
| 101 |
-
hidden_act="gelu_pytorch_tanh",
|
| 102 |
-
layer_norm_eps=1e-6,
|
| 103 |
-
attention_dropout=0.0,
|
| 104 |
-
# This differs from `CLIPTokenizer`'s default and from openai/fgclip2
|
| 105 |
-
# See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
|
| 106 |
-
pad_token_id=1,
|
| 107 |
-
bos_token_id=49406,
|
| 108 |
-
eos_token_id=49407,
|
| 109 |
-
projection_size=None,
|
| 110 |
-
keep_len=20,
|
| 111 |
-
longtext_len=196,
|
| 112 |
-
**kwargs,
|
| 113 |
-
):
|
| 114 |
-
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
| 115 |
-
|
| 116 |
-
self.vocab_size = vocab_size
|
| 117 |
-
self.hidden_size = hidden_size
|
| 118 |
-
self.intermediate_size = intermediate_size
|
| 119 |
-
self.num_hidden_layers = num_hidden_layers
|
| 120 |
-
self.num_attention_heads = num_attention_heads
|
| 121 |
-
self.max_position_embeddings = max_position_embeddings
|
| 122 |
-
self.layer_norm_eps = layer_norm_eps
|
| 123 |
-
self.hidden_act = hidden_act
|
| 124 |
-
self.attention_dropout = attention_dropout
|
| 125 |
-
self.projection_size = projection_size if projection_size is not None else hidden_size
|
| 126 |
-
self.keep_len = keep_len
|
| 127 |
-
self.longtext_len = longtext_len
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
class Fgclip2VisionConfig(PretrainedConfig):
|
| 131 |
-
r"""
|
| 132 |
-
This is the configuration class to store the configuration of a [`Fgclip2VisionModel`]. It is used to instantiate a
|
| 133 |
-
Fgclip2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
| 134 |
-
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Fgclip2
|
| 135 |
-
[qihoo/fgclip2-base-patch16](https://huggingface.co/qihoo/fgclip2-base-patch16) architecture.
|
| 136 |
-
|
| 137 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 138 |
-
documentation from [`PretrainedConfig`] for more information.
|
| 139 |
-
|
| 140 |
-
Args:
|
| 141 |
-
hidden_size (`int`, *optional*, defaults to 768):
|
| 142 |
-
Dimensionality of the encoder layers and the pooler layer.
|
| 143 |
-
intermediate_size (`int`, *optional*, defaults to 3072):
|
| 144 |
-
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 145 |
-
num_hidden_layers (`int`, *optional*, defaults to 12):
|
| 146 |
-
Number of hidden layers in the Transformer encoder.
|
| 147 |
-
num_attention_heads (`int`, *optional*, defaults to 12):
|
| 148 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
| 149 |
-
num_channels (`int`, *optional*, defaults to 3):
|
| 150 |
-
Number of channels in the input images.
|
| 151 |
-
num_patches (`int`, *optional*, defaults to 256):
|
| 152 |
-
The number of patches in the image with the size of (`patch_size`, `patch_size`).
|
| 153 |
-
The image is resized to fill maximum of this number of patches, and to preserve
|
| 154 |
-
the aspect ratio. In case the resulted number of patches is lower, the image is
|
| 155 |
-
padded in "patch" dimension.
|
| 156 |
-
patch_size (`int`, *optional*, defaults to 16):
|
| 157 |
-
The size (resolution) of each patch.
|
| 158 |
-
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
| 159 |
-
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 160 |
-
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
| 161 |
-
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 162 |
-
The epsilon used by the layer normalization layers.
|
| 163 |
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 164 |
-
The dropout ratio for the attention probabilities.
|
| 165 |
-
|
| 166 |
-
Example:
|
| 167 |
-
|
| 168 |
-
```python
|
| 169 |
-
>>> from transformers import Fgclip2VisionConfig, Fgclip2VisionModel
|
| 170 |
-
|
| 171 |
-
>>> # Initializing a Fgclip2VisionConfig with qihoo/fgclip2-base-patch16 style configuration
|
| 172 |
-
>>> configuration = Fgclip2VisionConfig()
|
| 173 |
-
|
| 174 |
-
>>> # Initializing a Fgclip2VisionModel (with random weights) from the qihoo/fgclip2-base-patch16 style configuration
|
| 175 |
-
>>> model = Fgclip2VisionModel(configuration)
|
| 176 |
-
|
| 177 |
-
>>> # Accessing the model configuration
|
| 178 |
-
>>> configuration = model.config
|
| 179 |
-
```"""
|
| 180 |
-
|
| 181 |
-
model_type = "fgclip2_vision_model"
|
| 182 |
-
base_config_key = "vision_config"
|
| 183 |
-
|
| 184 |
-
def __init__(
|
| 185 |
-
self,
|
| 186 |
-
hidden_size=768,
|
| 187 |
-
intermediate_size=3072,
|
| 188 |
-
num_hidden_layers=12,
|
| 189 |
-
num_attention_heads=12,
|
| 190 |
-
num_channels=3,
|
| 191 |
-
num_patches=256,
|
| 192 |
-
patch_size=16,
|
| 193 |
-
hidden_act="gelu_pytorch_tanh",
|
| 194 |
-
layer_norm_eps=1e-6,
|
| 195 |
-
attention_dropout=0.0,
|
| 196 |
-
**kwargs,
|
| 197 |
-
):
|
| 198 |
-
super().__init__(**kwargs)
|
| 199 |
-
|
| 200 |
-
self.hidden_size = hidden_size
|
| 201 |
-
self.intermediate_size = intermediate_size
|
| 202 |
-
self.num_hidden_layers = num_hidden_layers
|
| 203 |
-
self.num_attention_heads = num_attention_heads
|
| 204 |
-
self.num_channels = num_channels
|
| 205 |
-
self.patch_size = patch_size
|
| 206 |
-
self.attention_dropout = attention_dropout
|
| 207 |
-
self.layer_norm_eps = layer_norm_eps
|
| 208 |
-
self.hidden_act = hidden_act
|
| 209 |
-
self.num_patches = num_patches
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
class Fgclip2Config(PretrainedConfig):
|
| 213 |
-
r"""
|
| 214 |
-
[`Fgclip2Config`] is the configuration class to store the configuration of a [`Fgclip2Model`]. It is used to
|
| 215 |
-
instantiate a Fgclip2 model according to the specified arguments, defining the text model and vision model configs.
|
| 216 |
-
Instantiating a configuration with the defaults will yield a similar configuration to that of the Fgclip2
|
| 217 |
-
[qihoo/fgclip2-base-patch16](https://huggingface.co/qihoo/fgclip2-base-patch16) architecture.
|
| 218 |
-
|
| 219 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 220 |
-
documentation from [`PretrainedConfig`] for more information.
|
| 221 |
-
|
| 222 |
-
Args:
|
| 223 |
-
text_config (`dict`, *optional*):
|
| 224 |
-
Dictionary of configuration options used to initialize [`Fgclip2TextConfig`].
|
| 225 |
-
vision_config (`dict`, *optional*):
|
| 226 |
-
Dictionary of configuration options used to initialize [`Fgclip2VisionConfig`].
|
| 227 |
-
kwargs (*optional*):
|
| 228 |
-
Dictionary of keyword arguments.
|
| 229 |
-
|
| 230 |
-
Example:
|
| 231 |
-
|
| 232 |
-
```python
|
| 233 |
-
>>> from transformers import Fgclip2Config, Fgclip2Model
|
| 234 |
-
|
| 235 |
-
>>> # Initializing a Fgclip2Config with qihoo/fgclip2-base-patch16 style configuration
|
| 236 |
-
>>> configuration = Fgclip2Config()
|
| 237 |
-
|
| 238 |
-
>>> # Initializing a Fgclip2Model (with random weights) from the qihoo/fgclip2-base-patch16 style configuration
|
| 239 |
-
>>> model = Fgclip2Model(configuration)
|
| 240 |
-
|
| 241 |
-
>>> # Accessing the model configuration
|
| 242 |
-
>>> configuration = model.config
|
| 243 |
-
|
| 244 |
-
>>> # We can also initialize a Fgclip2Config from a Fgclip2TextConfig and a Fgclip2VisionConfig
|
| 245 |
-
>>> from transformers import Fgclip2TextConfig, Fgclip2VisionConfig
|
| 246 |
-
|
| 247 |
-
>>> # Initializing a Fgclip2Text and Fgclip2Vision configuration
|
| 248 |
-
>>> config_text = Fgclip2TextConfig()
|
| 249 |
-
>>> config_vision = Fgclip2VisionConfig()
|
| 250 |
-
|
| 251 |
-
>>> config = Fgclip2Config.from_text_vision_configs(config_text, config_vision)
|
| 252 |
-
```"""
|
| 253 |
-
|
| 254 |
-
model_type = "fgclip2"
|
| 255 |
-
sub_configs = {"text_config": Fgclip2TextConfig, "vision_config": Fgclip2VisionConfig}
|
| 256 |
-
|
| 257 |
-
def __init__(self, text_config=None, vision_config=None, **kwargs):
|
| 258 |
-
super().__init__(**kwargs)
|
| 259 |
-
|
| 260 |
-
if text_config is None:
|
| 261 |
-
text_config = {}
|
| 262 |
-
logger.info("`text_config` is `None`. Initializing the `Fgclip2TextConfig` with default values.")
|
| 263 |
-
|
| 264 |
-
if vision_config is None:
|
| 265 |
-
vision_config = {}
|
| 266 |
-
logger.info("`vision_config` is `None`. initializing the `Fgclip2VisionConfig` with default values.")
|
| 267 |
-
|
| 268 |
-
self.text_config = Fgclip2TextConfig(**text_config)
|
| 269 |
-
self.vision_config = Fgclip2VisionConfig(**vision_config)
|
| 270 |
-
|
| 271 |
-
self.initializer_factor = 1.0
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
__all__ = ["Fgclip2Config", "Fgclip2TextConfig", "Fgclip2VisionConfig"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|