import os os.environ["HF_ENDPOINT"] = "https://hf-mirror.com" import numpy as np import soundfile import onnxruntime as ort import argparse import time from split_utils import split_sentence from text import cleaned_text_to_sequence from text.cleaner import clean_text from symbols import LANG_TO_SYMBOL_MAP import re def intersperse(lst, item): result = [item] * (len(lst) * 2 + 1) result[1::2] = lst return result def get_text_for_tts_infer(text, language_str, symbol_to_id=None): norm_text, phone, tone, word2ph = clean_text(text, language_str) phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str, symbol_to_id) phone = intersperse(phone, 0) tone = intersperse(tone, 0) language = intersperse(language, 0) phone = np.array(phone, dtype=np.int32) tone = np.array(tone, dtype=np.int32) language = np.array(language, dtype=np.int32) word2ph = np.array(word2ph, dtype=np.int32) * 2 word2ph[0] += 1 return phone, tone, language, norm_text, word2ph def split_sentences_into_pieces(text, language, quiet=False): texts = split_sentence(text, language_str=language) if not quiet: print(" > Text split to sentences.") print('\n'.join(texts)) print(" > ===========================") return texts def get_args(): parser = argparse.ArgumentParser( prog="melotts", description="Run TTS on input sentence" ) parser.add_argument("--sentence", "-s", type=str, required=False, default="爱芯元智半导体股份有限公司,致力于打造世界领先的人工智能感知与边缘计算芯片。服务智慧城市、智能驾驶、机器人的海量普惠的应用") parser.add_argument("--wav", "-w", type=str, required=False, default="output.wav") parser.add_argument("--encoder", "-e", type=str, required=False, default=None) parser.add_argument("--decoder", "-d", type=str, required=False, default=None) parser.add_argument("--dec_len", type=int, default=128) parser.add_argument("--sample_rate", "-sr", type=int, required=False, default=44100) parser.add_argument("--speed", type=float, required=False, default=0.8) parser.add_argument("--language", "-l", type=str, choices=["ZH", "ZH_MIX_EN", "JP", "EN", 'KR', "ES", "SP","FR"], required=False, default="ZH_MIX_EN") return parser.parse_args() def audio_numpy_concat(segment_data_list, sr, speed=1.): audio_segments = [] for segment_data in segment_data_list: audio_segments += segment_data.reshape(-1).tolist() audio_segments += [0] * int((sr * 0.05) / speed) audio_segments = np.array(audio_segments).astype(np.float32) return audio_segments def merge_sub_audio(sub_audio_list, pad_size, audio_len): # Average pad part if pad_size > 0: for i in range(len(sub_audio_list) - 1): sub_audio_list[i][-pad_size:] += sub_audio_list[i+1][:pad_size] sub_audio_list[i][-pad_size:] /= 2 if i > 0: sub_audio_list[i] = sub_audio_list[i][pad_size:] sub_audio = np.concatenate(sub_audio_list, axis=-1) return sub_audio[:audio_len] # 计算每个词的发音时长 def calc_word2pronoun(word2ph, pronoun_lens): indice = [0] for ph in word2ph[:-1]: indice.append(indice[-1] + ph) word2pronoun = [] for i, ph in zip(indice, word2ph): word2pronoun.append(np.sum(pronoun_lens[i : i + ph])) return word2pronoun # 生成有overlap的slice,slice索引是对于zp的 def generate_slices(word2pronoun, dec_len): pn_start, pn_end = 0, 0 zp_start, zp_end = 0, 0 zp_len = 0 pn_slices = [] zp_slices = [] while pn_end < len(word2pronoun): # 前一个slice长度大于2 且 加上现在这个字没有超过dec_len,则往前overlap两个字 if pn_end - pn_start > 2 and np.sum(word2pronoun[pn_end - 2 : pn_end + 1]) <= dec_len: zp_len = np.sum(word2pronoun[pn_end - 2 : pn_end]) zp_start = zp_end - zp_len pn_start = pn_end - 2 else: zp_len = 0 zp_start = zp_end pn_start = pn_end while pn_end < len(word2pronoun) and zp_len + word2pronoun[pn_end] <= dec_len: zp_len += word2pronoun[pn_end] pn_end += 1 zp_end = zp_start + zp_len pn_slices.append(slice(pn_start, pn_end)) zp_slices.append(slice(zp_start, zp_end)) return pn_slices, zp_slices def main(): args = get_args() sentence = args.sentence sample_rate = args.sample_rate enc_model = args.encoder # default="../models/encoder.onnx" dec_model = args.decoder # default="../models/decoder.onnx" language = args.language # default: ZH_MIX_EN dec_len = args.dec_len # default: 128 if language == "ZH": language = "ZH_MIX_EN" if enc_model is None: if "ZH" in language: enc_model = "../models/encoder-zh.onnx" else: enc_model = f"../models/encoder-{language.lower()}.onnx" assert os.path.exists(enc_model), f"Encoder model ({enc_model}) not exist!" if dec_model is None: if "ZH" in language: dec_model = "../models/decoder-zh.onnx" else: dec_model = f"../models/decoder-{language.lower()}.onnx" assert os.path.exists(dec_model), f"Decoder model ({dec_model}) not exist!" print(f"sentence: {sentence}") print(f"sample_rate: {sample_rate}") print(f"encoder: {enc_model}") print(f"decoder: {dec_model}") print(f"language: {language}") _symbol_to_id = {s: i for i, s in enumerate(LANG_TO_SYMBOL_MAP[language])} # Split sentence start = time.time() sens = split_sentences_into_pieces(sentence, language, quiet=False) print(f"split_sentences_into_pieces take {1000 * (time.time() - start)}ms") # Load models start = time.time() sess_enc = ort.InferenceSession(enc_model, providers=["CPUExecutionProvider"], sess_options=ort.SessionOptions()) sess_dec = ort.InferenceSession(dec_model, providers=["CPUExecutionProvider"], sess_options=ort.SessionOptions()) print(f"load models take {1000 * (time.time() - start)}ms") # Load static input g = np.fromfile(f"../models/g-{language.lower()}.bin", dtype=np.float32).reshape(1, 256, 1) # Final wav audio_list = [] # Iterate over splitted sentences for n, se in enumerate(sens): if language in ['EN', 'ZH_MIX_EN']: se = re.sub(r'([a-z])([A-Z])', r'\1 \2', se) print(f"\nSentence[{n}]: {se}") # Convert sentence to phones and tones phones, tones, lang_ids, norm_text, word2ph = get_text_for_tts_infer(se, language, symbol_to_id=_symbol_to_id) start = time.time() # Run encoder z_p, pronoun_lens, audio_len = sess_enc.run(None, input_feed={ 'phone': phones, 'g': g, 'tone': tones, 'language': lang_ids, 'noise_scale': np.array([0], dtype=np.float32), 'length_scale': np.array([1.0 / args.speed], dtype=np.float32), 'noise_scale_w': np.array([0], dtype=np.float32), 'sdp_ratio': np.array([0], dtype=np.float32)}) print(f"encoder run take {1000 * (time.time() - start):.2f}ms") # 计算每个词的发音长度 word2pronoun = calc_word2pronoun(word2ph, pronoun_lens) # 生成word2pronoun和zp的切片 pn_slices, zp_slices = generate_slices(word2pronoun, dec_len) audio_len = audio_len[0] sub_audio_list = [] for i, (ps, zs) in enumerate(zip(pn_slices, zp_slices)): zp_slice = z_p[..., zs] # Padding前zp的长度 sub_dec_len = zp_slice.shape[-1] # Padding前输出音频的长度 sub_audio_len = 512 * sub_dec_len # Padding到dec_len if zp_slice.shape[-1] < dec_len: zp_slice = np.concatenate((zp_slice, np.zeros((*zp_slice.shape[:-1], dec_len - zp_slice.shape[-1]), dtype=np.float32)), axis=-1) start = time.time() audio = sess_dec.run(None, input_feed={"z_p": zp_slice, "g": g })[0].flatten() # 处理overlap audio_start = 0 if len(sub_audio_list) > 0: if pn_slices[i - 1].stop > ps.start: # 去掉第一个字 audio_start = 512 * word2pronoun[ps.start] audio_end = sub_audio_len if i < len(pn_slices) - 1: if ps.stop > pn_slices[i + 1].start: # 去掉最后一个字 audio_end = sub_audio_len - 512 * word2pronoun[ps.stop - 1] audio = audio[audio_start:audio_end] print(f"Decode slice[{i}]: decoder run take {1000 * (time.time() - start):.2f}ms") sub_audio_list.append(audio) sub_audio = merge_sub_audio(sub_audio_list, 0, audio_len) audio_list.append(sub_audio) audio = audio_numpy_concat(audio_list, sr=sample_rate, speed=args.speed) soundfile.write(args.wav, audio, sample_rate) print(f"Save to {args.wav}") if __name__ == "__main__": main()