MixFormerV2 / run_mixformer2_axmodel.py
qqc1989's picture
Upload 6 files
4494462 verified
import argparse
import os
import re
import sys
import time
import cv2
import math
import glob
import numpy as np
import axengine as axe
from axengine import axclrt_provider_name, axengine_provider_name
def load_model(model_path: str | os.PathLike, selected_provider: str, selected_device_id: int = 0):
if selected_provider == 'AUTO':
# Use AUTO to let the pyengine choose the first available provider
return axe.InferenceSession(model_path)
providers = []
if selected_provider == axclrt_provider_name:
provider_options = {"device_id": selected_device_id}
providers.append((axclrt_provider_name, provider_options))
if selected_provider == axengine_provider_name:
providers.append(axengine_provider_name)
return axe.InferenceSession(model_path, providers=providers)
def get_frames(video_name):
"""获取视频帧
Args:
video_name (_type_): _description_
Yields:
_type_: _description_
"""
if not video_name:
rtsp = "rtsp://%s:%s@%s:554/cam/realmonitor?channel=1&subtype=1" % ("admin", "123456", "192.168.1.108")
cap = cv2.VideoCapture(rtsp) if rtsp else cv2.VideoCapture()
# warmup
for i in range(5):
cap.read()
while True:
ret, frame = cap.read()
if ret:
# print('读取成功===>>>', frame.shape)
yield cv2.resize(frame,(800, 600))
else:
break
elif video_name.endswith('avi') or \
video_name.endswith('mp4'):
cap = cv2.VideoCapture(video_name)
while True:
ret, frame = cap.read()
if ret:
yield frame
else:
break
else:
images = sorted(glob(os.path.join(video_name, 'img', '*.jp*')))
for img in images:
frame = cv2.imread(img)
yield frame
class Preprocessor_wo_mask(object):
def __init__(self):
self.mean = np.array([0.485, 0.456, 0.406]).reshape((1, 3, 1, 1)).astype(np.float32)
self.std = np.array([0.229, 0.224, 0.225]).reshape((1, 3, 1, 1)).astype(np.float32)
def process(self, img_arr: np.ndarray):
# Deal with the image patch
img_tensor = img_arr.transpose((2, 0, 1)).reshape((1, 3, img_arr.shape[0], img_arr.shape[1])).astype(np.float32) / 255.0
img_tensor_norm = (img_tensor - self.mean) / self.std # (1,3,H,W)
return img_tensor_norm
class MFTrackerORT:
def __init__(self, model_path, fp16=False) -> None:
self.debug = True
self.gpu_id = 0
self.providers = ["CUDAExecutionProvider"]
self.provider_options = [{"device_id": str(self.gpu_id)}]
self.model_path = model_path
self.fp16 = fp16
self.init_track_net()
self.preprocessor = Preprocessor_wo_mask()
self.max_score_decay = 1.0
self.search_factor = 4.5
self.search_size = 224
self.template_factor = 2.0
self.template_size = 112
self.update_interval = 200
self.online_size = 1
def init_track_net(self):
"""使用设置的参数初始化tracker网络
"""
self.ax_session = load_model(self.model_path, selected_provider="AUTO")
def track_init(self, frame, target_pos=None, target_sz = None):
"""使用第一帧进行初始化
Args:
frame (_type_): _description_
target_pos (_type_, optional): _description_. Defaults to None.
target_sz (_type_, optional): _description_. Defaults to None.
"""
self.trace_list = []
try:
# [x, y, w, h]
init_state = [target_pos[0], target_pos[1], target_sz[0], target_sz[1]]
z_patch_arr, _, z_amask_arr = self.sample_target(frame, init_state, self.template_factor, output_sz=self.template_size)
template = self.preprocessor.process(z_patch_arr)
self.template = template
self.online_template = template
self.online_state = init_state
self.online_image = frame
self.max_pred_score = -1.0
self.online_max_template = template
self.online_forget_id = 0
# save states
self.state = init_state
self.frame_id = 0
print(f"第一帧初始化完毕!")
except:
print(f"第一帧初始化异常!")
exit()
def track(self, image, info: dict = None):
H, W, _ = image.shape
self.frame_id += 1
x_patch_arr, resize_factor, x_amask_arr = self.sample_target(image, self.state, self.search_factor,
output_sz=self.search_size) # (x1, y1, w, h)
search = self.preprocessor.process(x_patch_arr)
# compute ONNX Runtime output prediction
ort_inputs = {'img_t': self.template, 'img_ot': self.online_template, 'img_search': search}
ort_outs = self.ax_session.run(None, ort_inputs)
# print(f">>> lenght trt_outputs: {ort_outs}")
pred_boxes = ort_outs[0]
pred_score = ort_outs[1]
# print(f">>> box and score: {pred_boxes} {pred_score}")
# Baseline: Take the mean of all pred boxes as the final result
pred_box = (np.mean(pred_boxes, axis=0) * self.search_size / resize_factor).tolist() # (cx, cy, w, h) [0,1]
# get the final box result
self.state = self.clip_box(self.map_box_back(pred_box, resize_factor), H, W, margin=10)
self.max_pred_score = self.max_pred_score * self.max_score_decay
# update template
if pred_score > 0.5 and pred_score > self.max_pred_score:
z_patch_arr, _, z_amask_arr = self.sample_target(image, self.state,
self.template_factor,
output_sz=self.template_size) # (x1, y1, w, h)
self.online_max_template = self.preprocessor.process(z_patch_arr)
self.max_pred_score = pred_score
if self.frame_id % self.update_interval == 0:
if self.online_size == 1:
self.online_template = self.online_max_template
else:
self.online_template[self.online_forget_id:self.online_forget_id+1] = self.online_max_template
self.online_forget_id = (self.online_forget_id + 1) % self.online_size
self.max_pred_score = -1
self.online_max_template = self.template
# for debug
if self.debug:
x1, y1, w, h = self.state
# image_BGR = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
cv2.rectangle(image, (int(x1),int(y1)), (int(x1+w),int(y1+h)), color=(0,0,255), thickness=2)
return {"target_bbox": self.state, "conf_score": pred_score}
def map_box_back(self, pred_box: list, resize_factor: float):
cx_prev, cy_prev = self.state[0] + 0.5 * self.state[2], self.state[1] + 0.5 * self.state[3]
cx, cy, w, h = pred_box
half_side = 0.5 * self.search_size / resize_factor
cx_real = cx + (cx_prev - half_side)
cy_real = cy + (cy_prev - half_side)
return [cx_real - 0.5 * w, cy_real - 0.5 * h, w, h]
def map_box_back_batch(self, pred_box: np.ndarray, resize_factor: float):
cx_prev, cy_prev = self.state[0] + 0.5 * self.state[2], self.state[1] + 0.5 * self.state[3]
cx, cy, w, h = pred_box.T # (N,4) --> (N,)
half_side = 0.5 * self.search_size / resize_factor
cx_real = cx + (cx_prev - half_side)
cy_real = cy + (cy_prev - half_side)
return np.stack([cx_real - 0.5 * w, cy_real - 0.5 * h, w, h], axis=-1)
def sample_target(self, im, target_bb, search_area_factor, output_sz=None, mask=None):
""" Extracts a square crop centered at target_bb box, of area search_area_factor^2 times target_bb area
args:
im - cv image
target_bb - target box [x, y, w, h]
search_area_factor - Ratio of crop size to target size
output_sz - (float) Size to which the extracted crop is resized (always square). If None, no resizing is done.
returns:
cv image - extracted crop
float - the factor by which the crop has been resized to make the crop size equal output_size
"""
if not isinstance(target_bb, list):
x, y, w, h = target_bb.tolist()
else:
x, y, w, h = target_bb
# Crop image
crop_sz = math.ceil(math.sqrt(w * h) * search_area_factor)
if crop_sz < 1:
raise Exception('Too small bounding box.')
x1 = int(round(x + 0.5 * w - crop_sz * 0.5))
x2 = int(x1 + crop_sz)
y1 = int(round(y + 0.5 * h - crop_sz * 0.5))
y2 = int(y1 + crop_sz)
x1_pad = int(max(0, -x1))
x2_pad = int(max(x2 - im.shape[1] + 1, 0))
y1_pad = int(max(0, -y1))
y2_pad = int(max(y2 - im.shape[0] + 1, 0))
# Crop target
im_crop = im[y1 + y1_pad:y2 - y2_pad, x1 + x1_pad:x2 - x2_pad, :]
if mask is not None:
mask_crop = mask[y1 + y1_pad:y2 - y2_pad, x1 + x1_pad:x2 - x2_pad]
# Pad
im_crop_padded = cv2.copyMakeBorder(im_crop, y1_pad, y2_pad, x1_pad, x2_pad, cv2.BORDER_CONSTANT)
# deal with attention mask
H, W, _ = im_crop_padded.shape
att_mask = np.ones((H,W))
end_x, end_y = -x2_pad, -y2_pad
if y2_pad == 0:
end_y = None
if x2_pad == 0:
end_x = None
att_mask[y1_pad:end_y, x1_pad:end_x] = 0
if mask is not None:
mask_crop_padded = cv2.copyMakeBorder(mask_crop, y1_pad, y2_pad, x1_pad, x2_pad, cv2.BORDER_CONSTANT)
if output_sz is not None:
resize_factor = output_sz / crop_sz
im_crop_padded = cv2.resize(im_crop_padded, (output_sz, output_sz))
att_mask = cv2.resize(att_mask, (output_sz, output_sz)).astype(np.bool_)
if mask is None:
return im_crop_padded, resize_factor, att_mask
mask_crop_padded = \
mask_crop_padded = cv2.resize(mask_crop_padded, (output_sz, output_sz))
return im_crop_padded, resize_factor, att_mask, mask_crop_padded
else:
if mask is None:
return im_crop_padded, att_mask.astype(np.bool_), 1.0
return im_crop_padded, 1.0, att_mask.astype(np.bool_), mask_crop_padded
def clip_box(self, box: list, H, W, margin=0):
x1, y1, w, h = box
x2, y2 = x1 + w, y1 + h
x1 = min(max(0, x1), W-margin)
x2 = min(max(margin, x2), W)
y1 = min(max(0, y1), H-margin)
y2 = min(max(margin, y2), H)
w = max(margin, x2-x1)
h = max(margin, y2-y1)
return [x1, y1, w, h]
def main(model_path, frame_path, repeat, selected_provider, selected_device_id):
Tracker = MFTrackerORT(model_path = model_path, fp16=False)
first_frame = True
Tracker.video_name = frame_path
frame_id = 0
total_time = 0
for frame in get_frames(Tracker.video_name):
# print(f"frame shape {frame.shape}")
# 如果超过了指定的帧数限制,则跳出循环
if repeat is not None and frame_id >= repeat:
print(f"Reached the maximum number of frames ({repeat}). Exiting loop.")
break
tic = cv2.getTickCount()
if first_frame:
# x, y, w, h = cv2.selectROI(video_name, frame, fromCenter=False)
x, y, w, h = 1079, 482, 99, 106
target_pos = [x, y]
target_sz = [w, h]
print('====================type=================', target_pos, type(target_pos), type(target_sz))
Tracker.track_init(frame, target_pos, target_sz)
first_frame = False
else:
state = Tracker.track(frame)
frame_id += 1
os.makedirs('axmodel_output', exist_ok=True)
cv2.imwrite(f'axmodel_output/{str(frame_id)}.png', frame)
toc = cv2.getTickCount() - tic
toc = int(1 / (toc / cv2.getTickFrequency()))
total_time += toc
print('Video: {:12s} {:3.1f}fps'.format('tracking', toc))
print('video: average {:12s} {:3.1f} fps'.format('finale average tracking fps', total_time/(frame_id - 1)))
class ExampleParser(argparse.ArgumentParser):
def error(self, message):
self.print_usage(sys.stderr)
print(f"\nError: {message}")
print("\nExample usage:")
print(" python3 run_mixformer2_axmodel.py -m <model_file> -f <frame_file>")
print(" python3 run_mixformer2_axmodel.py -m compiled.axmodel -f car.avi")
print(
f" python3 run_mixformer2_axmodel.py -m compiled.axmodel -f car.avi -p {axengine_provider_name}")
print(
f" python3 run_mixformer2_axmodel.py -m compiled.axmodel -f car.avi -p {axclrt_provider_name}")
sys.exit(1)
if __name__ == "__main__":
ap = ExampleParser()
ap.add_argument('-m', '--model-path', type=str, help='model path', required=True)
ap.add_argument('-f', '--frame-path', type=str, help='frame path', required=True)
ap.add_argument('-r', '--repeat', type=int, help='repeat times', default=100)
ap.add_argument(
'-p',
'--provider',
type=str,
choices=["AUTO", f"{axclrt_provider_name}", f"{axengine_provider_name}"],
help=f'"AUTO", "{axclrt_provider_name}", "{axengine_provider_name}"',
default='AUTO'
)
ap.add_argument(
'-d',
'--device-id',
type=int,
help=R'axclrt device index, depends on how many cards inserted',
default=0
)
args = ap.parse_args()
model_file = args.model_path
frame_file = args.frame_path
# check if the model and image exist
assert os.path.exists(model_file), f"model file path {model_file} does not exist"
assert os.path.exists(frame_file), f"image file path {frame_file} does not exist"
repeat = args.repeat
provider = args.provider
device_id = args.device_id
main(model_file, frame_file, repeat, provider, device_id)