File size: 12,766 Bytes
6602891 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
# import llm_utils
import dataclasses
import json
from transformers import AutoTokenizer, AutoConfig
import torch
from torchvision.transforms.functional import InterpolationMode
import numpy as np
from ml_dtypes import bfloat16
from axengine import InferenceSession
from tqdm import tqdm
import torchvision.transforms as T
from PIL import Image
import argparse
def post_process(data, topk=1, topp=0.9, temperature=0.6):
def top_p(l: np.ndarray, p: float) -> np.ndarray:
index = np.argsort(l)
res = l.copy()
sum_p = 0
for i in index[::-1]:
if sum_p >= p:
res[i] = 0
sum_p += res[i]
return res / sum_p
def softmax(l: np.ndarray) -> np.ndarray:
l_max = l - l.max()
l_exp = np.exp(l_max)
res = l_exp / np.sum(l_exp)
return res.astype(np.float64)
r = data.astype(np.float32)
r = r.flatten()
# topk
candidate_index = np.argpartition(r, -topk)[-topk:]
candidate_value = r[candidate_index]
# temperature
candidate_value /= temperature
# softmax
candidate_soft = softmax(candidate_value)
# topp
candidate_soft = top_p(candidate_soft, topp)
candidate_soft = candidate_soft.astype(np.float64) / candidate_soft.sum()
pos = np.random.multinomial(1, candidate_soft).argmax()
next_token = candidate_index[pos]
return next_token, candidate_index, candidate_soft
def generate_slice_indices(token_len, prefill=128, expand=512):
remaining = max(0, token_len - prefill)
extra_blocks = (remaining + expand - 1) // expand
return list(range(extra_blocks + 1))
if __name__ == "__main__":
prompt = None
parser = argparse.ArgumentParser(description="Model configuration parameters")
parser.add_argument("--hf_model", type=str, default="../qwen2.5_tokenizer",
help="Path to HuggingFace model")
parser.add_argument("--axmodel_path", type=str, default="../qwen2.5-1.5b-ctx-ax650",
help="Path to save compiled axmodel of llama model")
parser.add_argument("-q", "--question", type=str, default="Please calculate the derivative of the function y=2x^2.",
help="Your question that you want to ask the model.")
args = parser.parse_args()
device = "cpu"
hf_model_path = args.hf_model
axmodel_path = args.axmodel_path
cfg = AutoConfig.from_pretrained(hf_model_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(hf_model_path, trust_remote_code=True, use_fast=False)
prompt = args.question
print("注意: 这里预先设定了长 prompt 测试. ")
# input_ids: 438 > 128
prompt = '''你能将英文翻译成中文吗? 比如这句话:
Once when I was six years old I saw a magnificent picture in a book, called True Stories from Nature, about the primeval forest. It was a picture of a boa constrictor in the act of swallowing an animal. Here is a copy of the drawing.
In the book it said: "Boa constrictors swallow their prey whole, without chewing it. After that they are not able to move, and they sleep through the six months that they need for digestion."
I pondered deeply, then, over the adventures of the jungle. And after some work with a colored pencil I succeeded in making my first drawing. My Drawing Number One. It looked like this:
I showed my masterpiece to the grown-ups, and asked them whether the drawing frightened them.
But they answered: "Frighten? Why should any one be frightened by a hat?"
My drawing was not a picture of a hat. It was a picture of a boa constrictor digesting an elephant. But since the grown-ups were not able to understand it, I made another drawing: I drew the inside of the boa constrictor, so that the grown-ups could see it clearly. They always need to have things explained. My Drawing Number Two looked like this:
The grown-ups‘ response, this time, was to advise me to lay aside my drawings of boa constrictors, whether from the inside or the outside, and devote myself instead to geography, history, arithmetic and grammar. That is why, at the age of six, I gave up what might have been a magnificent career as a painter. I had been disheartened by the failure of my Drawing Number One and my Drawing Number Two. Grown-ups never understand anything by themselves, and it is tiresome for children to be always and forever explaining things to them.
So then I chose another profession, and learned to pilot airplanes.
'''
# prompt = "介绍一下你自己"
# prompt = "今天是几号,天气怎么样"
prompt = "你知道 `床前明月光,疑是地上霜`是谁写的吗?"
messages = [
{"role": "system", "content": "你的名字叫小智(allen), 你是一个人畜无害的 AI 助手. 深圳市今天(4月1日)阴天, 愚人节, 气温在 14°C 至 19°C 之间, 微风."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
token_ids = model_inputs.input_ids[0].cpu().numpy().tolist()
embeds = np.load(f"{axmodel_path}/model.embed_tokens.weight.npy")
prefill_data = np.take(embeds, token_ids, axis=0)
token_len = len(token_ids)
import pdb; pdb.set_trace()
##################
lastN = 2559
kv_dim = cfg.hidden_size // cfg.num_attention_heads * cfg.num_key_value_heads
k_caches = [
np.zeros((1, lastN, kv_dim), dtype=bfloat16)
for _ in range(cfg.num_hidden_layers)
]
v_caches = [
np.zeros((1, lastN, kv_dim), dtype=bfloat16)
for _ in range(cfg.num_hidden_layers)
]
prefill_decoder_sessins = []
for i in tqdm(range(cfg.num_hidden_layers), desc="Init InferenceSession"):
session = InferenceSession(
f"{axmodel_path}/qwen2_p128_l{i}_together.axmodel"
)
prefill_decoder_sessins.append(session)
post_process_session = InferenceSession(
f"{axmodel_path}/qwen2_post.axmodel"
)
print("model load done!")
print("prefill token_len: ", token_len)
"""
Model input shape:
- kv_cache: g1:[1, 1, hidden_size] -> g2:[1, kv_mask_expand_lens, kv_dim] -> g3:[1, kv_mask_expand_lens * 2, kv_dim]
- mask: g1:[1, input_prefill_len, input_prefill_len] -> g2:[1, input_prefill_len, input_prefill_len+kv_mask_expand_lens] -> g3:[1, input_prefill_len, input_prefill_len+kv_mask_expand_lens*2]
- indices: g1:[1, input_prefill_len] -> g2:[1, input_prefill_len] -> g3:[1, input_prefill_len]
- input: g1:[1, input_prefill_len, hidden_size] -> g2:[1, input_prefill_len, hidden_size] -> g3:[1, input_prefill_len, hidden_size]
"""
input_prefill_len = 128
kv_mask_expand_len = 128 # 512
"""
Model output shape:
- kv_cache: g1:[1, input_prefill_len, kv_dim] -> g2:[1, input_prefill_len, kv_dim] -> g3:[1, input_prefill_len, kv_dim]
- output: g1:[1, input_prefill_len, hidden_size] -> g2:[1, input_prefill_len, hidden_size] -> g3:[1, input_prefill_len, hidden_size]
"""
slice_indexs = generate_slice_indices(token_len, input_prefill_len, input_prefill_len)
print(f"slice_indexs is {slice_indexs}")
"""
prefill
"""
if input_prefill_len > 0:
for slice_index in slice_indexs:
if slice_index == 0:
current_slice_len = input_prefill_len
else:
current_slice_len = kv_mask_expand_len
indices = np.array(
list(
range(
slice_index * input_prefill_len,
(slice_index + 1) * input_prefill_len,
)
),
np.uint32,
).reshape((1, input_prefill_len))
mask = (
np.zeros((1, input_prefill_len, current_slice_len * slice_index + input_prefill_len))
- 65536
)
data = np.zeros((1, input_prefill_len, cfg.hidden_size)).astype(bfloat16)
for i, t in enumerate(
range(
slice_index * input_prefill_len,
(slice_index + 1) * input_prefill_len,
)
):
if t < len(token_ids):
mask[:, i, : slice_index * input_prefill_len + i + 1] = 0
data[:, i : i + 1, :] = (
prefill_data[t]
.reshape((1, 1, cfg.hidden_size))
.astype(bfloat16)
)
if slice_index == slice_indexs[-1]:
curlen_procd = token_len - slice_index * input_prefill_len # curlen_procd 是当前处理数据的长度
else:
curlen_procd = input_prefill_len
mask = mask.astype(bfloat16)
for i in range(cfg.num_hidden_layers):
input_feed = {
"K_cache": (
k_caches[i][:, 0: current_slice_len * slice_index, :]
if slice_index
else np.zeros((1, 1, cfg.hidden_size), dtype=bfloat16)
),
"V_cache": (
v_caches[i][:, 0: current_slice_len * slice_index, :]
if slice_index
else np.zeros((1, 1, cfg.hidden_size), dtype=bfloat16)
),
"indices": indices,
"input": data,
"mask": mask,
}
outputs = prefill_decoder_sessins[i].run(None, input_feed, shape_group=slice_index + 1)
k_caches[i][
:,
slice_index
* input_prefill_len : slice_index
* input_prefill_len + curlen_procd, # current_slice_len
:,
] = outputs[0][:, :curlen_procd, :]
v_caches[i][
:,
slice_index
* input_prefill_len : slice_index
* input_prefill_len + curlen_procd, # current_slice_len
:,
] = outputs[1][:, :curlen_procd, :]
data = outputs[2]
print("slice prefill done", slice_index)
post_out = post_process_session.run(
None,
{
"input": data[
:, token_len - (len(slice_indexs) - 1) * input_prefill_len - 1, None, :
]
}
)[0]
next_token, posssible_tokens, possible_soft = post_process(post_out)
posibles = [tokenizer.decode([t]) for t in posssible_tokens]
posible_soft = [str((t, s)) for t, s in zip(posibles, possible_soft)]
token_ids.append(next_token)
print("answer >>", tokenizer.decode(token_ids[token_len], skip_special_tokens=True), end='', flush=True)
# print("answer >>", end='', flush=True)
# set to decoder
kv_cache_len = lastN
mask = np.zeros((1, 1, kv_cache_len + 1), dtype=np.float32).astype(bfloat16)
mask[:, :, :kv_cache_len] -= 65536
if input_prefill_len > 0:
mask[:, :, :token_len] = 0
# for start_indice in tqdm(range(kv_cache_len), desc="Decode"):
for start_indice in range(kv_cache_len):
if input_prefill_len > 0 and start_indice < token_len:
continue
next_token = token_ids[start_indice]
indices = np.array([start_indice], np.uint32).reshape((1, 1))
data = embeds[next_token, :].reshape((1, 1, cfg.hidden_size)).astype(bfloat16)
for i in range(cfg.num_hidden_layers):
input_feed = {
"K_cache": k_caches[i],
"V_cache": v_caches[i],
"indices": indices,
"input": data,
"mask": mask,
}
outputs = prefill_decoder_sessins[i].run(None, input_feed, shape_group=0)
k_caches[i][:, start_indice, :] = outputs[0][:, :, :]
v_caches[i][:, start_indice, :] = outputs[1][:, :, :]
data = outputs[2]
mask[..., start_indice] = 0
if start_indice < token_len - 1:
pass
else:
post_out = post_process_session.run(None, {"input": data})[0]
next_token, posssible_tokens, possible_soft = post_process(post_out)
token_ids.append(next_token)
if next_token == tokenizer.eos_token_id and next_token > token_len:
break
print(tokenizer.decode(next_token, skip_special_tokens=True), end='', flush=True)
|