# import onnxruntime import axengine as axe CLASS_NAMES = [ "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"] class axmodel_inferencer: def __init__(self, model_path) -> None: # self.onnx_model_sess = onnxruntime.InferenceSession(model_path) self.onnx_model_sess = axe.InferenceSession(model_path) self.output_names = [] self.input_names = [] print(model_path) for i in range(len(self.onnx_model_sess.get_inputs())): self.input_names.append(self.onnx_model_sess.get_inputs()[i].name) print(" input:", i, self.onnx_model_sess.get_inputs()[i].name, self.onnx_model_sess.get_inputs()[i].shape) for i in range(len(self.onnx_model_sess.get_outputs())): self.output_names.append( self.onnx_model_sess.get_outputs()[i].name) print(" output:", i, self.onnx_model_sess.get_outputs()[i].name, self.onnx_model_sess.get_outputs()[i].shape) print("") def get_input_count(self): return len(self.input_names) def get_input_shape(self, idx: int): return self.onnx_model_sess.get_inputs()[idx].shape def get_input_names(self): return self.input_names def get_output_count(self): return len(self.output_names) def get_output_shape(self, idx: int): return self.onnx_model_sess.get_outputs()[idx].shape def get_output_names(self): return self.output_names def inference(self, tensor): return self.onnx_model_sess.run( self.output_names, input_feed={self.input_names[0]: tensor}) def inference_multi_input(self, tensors: list): inputs = dict() for idx, tensor in enumerate(tensors): inputs[self.input_names[idx]] = tensor return self.onnx_model_sess.run(input_feed=inputs) def numpy_sigmoid(self,x): """ 用NumPy实现的sigmoid函数 参数: x (np.ndarray): 输入数组 返回: np.ndarray: 经过sigmoid处理后的数组 """ return 1 / (1 + np.exp(-x)) if __name__ == "__main__": axmodel_model_path = "rtdetr_msda.axmodel" test_model = axmodel_inferencer(axmodel_model_path) # import onnxruntime as ort from PIL import Image, ImageDraw # from torchvision.transforms import ToTensor import numpy as np # import torch # # print(onnx.helper.printable_graph(mm.graph)) image = Image.open('ssd_horse.jpg').convert('RGB') im = image.resize((640, 640)) im_data = np.array([im]) print(im_data.shape) pred_logits,pred_boxes = test_model.inference(im_data) pred_logits = np.array(pred_logits) pred_boxes = np.array(pred_boxes) print(pred_boxes.shape,pred_logits.shape) # pred_logits = 1/(1+np.exp(-pred_logits)) pred_logits = test_model.numpy_sigmoid(pred_logits) # print(pred["pred_logits"].shape,pred["pred_boxes"].shape) # argmax = torch.argmax(pred_logits,2).reshape(-1) argmax = np.argmax(pred_logits, axis=2).reshape(-1) print(argmax.shape) # pred_logits = pred["pred_logits"] # pred_boxes = pred["pred_boxes"] draw = ImageDraw.Draw(image) for i,idx in enumerate(argmax): score = pred_logits[0,i,idx] if score > 0.6: print(score,idx) bbox = pred_boxes[0,i] print(bbox) cx,cy,w,h = bbox x0 = (cx-0.5*w)*image.width y0 = (cy-0.5*h)*image.height x1 = (cx+0.5*w)*image.width y1 = (cy+0.5*h)*image.height draw.rectangle([x0,y0,x1,y1],outline="red") draw.text([x0,y0],CLASS_NAMES[idx]+" %.2f"%score) image.save("output.jpg")