File size: 7,920 Bytes
e86efa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de35c61
e86efa6
 
 
 
 
 
 
 
 
de35c61
 
 
 
 
 
 
 
 
e86efa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from typing import List, Union
import numpy as np
# import onnxruntime
import axengine
import torch
from PIL import Image
from transformers import CLIPTokenizer, CLIPTextModel, PreTrainedTokenizer, CLIPTextModelWithProjection

import time
import argparse
import uuid  # 用于生成唯一文件名
import os


def get_args():
    parser = argparse.ArgumentParser(
        prog="StableDiffusion",
        description="Generate picture with the input prompt"
    )
    parser.add_argument("--prompt", type=str, required=False, default="Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", help="the input text prompt")
    parser.add_argument("--text_model_dir", type=str, required=False, default="./models/", help="Path to text encoder and tokenizer files")
    parser.add_argument("--unet_model", type=str, required=False, default="./models/unet.axmodel", help="Path to unet axmodel model")
    parser.add_argument("--vae_decoder_model", type=str, required=False, default="./models/vae_decoder.axmodel", help="Path to vae decoder axmodel model")
    parser.add_argument("--time_input", type=str, required=False, default="./models/time_input_txt2img.npy", help="Path to time input file")
    parser.add_argument("--save_dir", type=str, required=False, default="./txt2img_output_axe", help="Path to the output image file")
    return parser.parse_args()

def maybe_convert_prompt(prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"):  # noqa: F821
    if not isinstance(prompt, List):
        prompts = [prompt]
    else:
        prompts = prompt

    prompts = [_maybe_convert_prompt(p, tokenizer) for p in prompts]

    if not isinstance(prompt, List):
        return prompts[0]

    return prompts


def _maybe_convert_prompt(prompt: str, tokenizer: "PreTrainedTokenizer"):  # noqa: F821
    tokens = tokenizer.tokenize(prompt)
    unique_tokens = set(tokens)
    for token in unique_tokens:
        if token in tokenizer.added_tokens_encoder:
            replacement = token
            i = 1
            while f"{token}_{i}" in tokenizer.added_tokens_encoder:
                replacement += f" {token}_{i}"
                i += 1

            prompt = prompt.replace(token, replacement)

    return prompt


def get_embeds(prompt = "Portrait of a pretty girl", tokenizer_dir = "./models/tokenizer", text_encoder_dir = "./models/text_encoder"):
    tokenizer = CLIPTokenizer.from_pretrained(tokenizer_dir)

    text_inputs = tokenizer(
        prompt,
        padding="max_length",
        max_length=77,
        truncation=True,
        return_tensors="pt",
    )
    text_input_ids = text_inputs.input_ids

    text_encoder = axengine.InferenceSession(
        os.path.join(
            text_encoder_dir,
            "sd15_text_encoder_sim.axmodel"
        ),
    )
    text_encoder_onnx_out = text_encoder.run(None, {"input_ids": text_input_ids.to("cpu").numpy().astype(np.int32)})[0]

    prompt_embeds_npy = text_encoder_onnx_out
    return prompt_embeds_npy


def get_alphas_cumprod():
    betas = torch.linspace(0.00085 ** 0.5, 0.012 ** 0.5, 1000, dtype=torch.float32) ** 2
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0).detach().numpy()
    final_alphas_cumprod = alphas_cumprod[0]
    self_timesteps = np.arange(0, 1000)[::-1].copy().astype(np.int64)
    return alphas_cumprod, final_alphas_cumprod, self_timesteps



if __name__ == '__main__':
    args = get_args()
    
    tokenizer_dir = args.text_model_dir + 'tokenizer'
    text_encoder_dir = args.text_model_dir + 'text_encoder'
    unet_model = args.unet_model
    vae_decoder_model = args.vae_decoder_model
    time_input = args.time_input
    save_dir = args.save_dir

    # 确保保存目录存在
    os.makedirs(save_dir, exist_ok=True)

    print(f"tokenizer: {tokenizer_dir}")
    print(f"text_encoder: {text_encoder_dir}")
    print(f"unet_model: {unet_model}")
    print(f"vae_decoder_model: {vae_decoder_model}")
    print(f"time_input: {time_input}")
    print(f"save_dir: {save_dir}")

    # 加载模型(只加载一次)
    start = time.time()
    unet_session_main = axengine.InferenceSession(unet_model)
    vae_decoder = axengine.InferenceSession(vae_decoder_model)
    print(f"load models take {(1000 * (time.time() - start)):.1f}ms")

    # 主循环:支持多次输入 Prompt
    while True:
        # 用户输入 Prompt
        prompt = input("\nEnter a prompt to generate an image (or type 'exit' to quit): ")
        if prompt.lower() == 'exit':
            print("Exiting...")
            break

        # Text Encoder
        start = time.time()
        prompt_embeds_npy = get_embeds(prompt, tokenizer_dir, text_encoder_dir)
        print(f"text encoder take {(1000 * (time.time() - start)):.1f}ms")

        # 初始化 Latent
        latents_shape = [1, 4, 64, 64]
        latent = torch.randn(latents_shape, generator=None, device="cpu", dtype=torch.float32,
                             layout=torch.strided).detach().numpy()
                             
        alphas_cumprod, final_alphas_cumprod, self_timesteps = get_alphas_cumprod()

        # 加载 time_input 文件
        time_input_data = np.load(time_input)

        # U-Net Inference Loop
        timesteps = np.array([999, 759, 499, 259]).astype(np.int64)
        unet_loop_start = time.time()
        for i, timestep in enumerate(timesteps):
            unet_start = time.time()
            noise_pred = unet_session_main.run(None, {
                "sample": latent,
                "/down_blocks.0/resnets.0/act_1/Mul_output_0": np.expand_dims(time_input_data[i], axis=0),
                "encoder_hidden_states": prompt_embeds_npy
            })[0]
            print(f"unet once take {(1000 * (time.time() - unet_start)):.1f}ms")

            sample = latent
            model_output = noise_pred
            if i < 3:
                prev_timestep = timesteps[i + 1]
            else:
                prev_timestep = timestep

            alpha_prod_t = alphas_cumprod[timestep]
            alpha_prod_t_prev = alphas_cumprod[prev_timestep] if prev_timestep >= 0 else final_alphas_cumprod

            beta_prod_t = 1 - alpha_prod_t
            beta_prod_t_prev = 1 - alpha_prod_t_prev

            scaled_timestep = timestep * 10
            c_skip = 0.5 ** 2 / (scaled_timestep ** 2 + 0.5 ** 2)
            c_out = scaled_timestep / (scaled_timestep ** 2 + 0.5 ** 2) ** 0.5
            predicted_original_sample = (sample - (beta_prod_t ** 0.5) * model_output) / (alpha_prod_t ** 0.5)

            denoised = c_out * predicted_original_sample + c_skip * sample

            if i != 3:
                noise = torch.randn(model_output.shape, generator=None, device="cpu", dtype=torch.float32,
                                    layout=torch.strided).to("cpu").detach().numpy()
                prev_sample = (alpha_prod_t_prev ** 0.5) * denoised + (beta_prod_t_prev ** 0.5) * noise
            else:
                prev_sample = denoised

            latent = prev_sample

        print(f"unet loop take {(1000 * (time.time() - unet_loop_start)):.1f}ms")

        # VAE Inference
        vae_start = time.time()
        latent = latent / 0.18215
        image = vae_decoder.run(None, {"x": latent})[0]
        print(f"vae inference take {(1000 * (time.time() - vae_start)):.1f}ms")

        # 保存结果
        save_start = time.time()
        image = np.transpose(image, (0, 2, 3, 1)).squeeze(axis=0)
        image_denorm = np.clip(image / 2 + 0.5, 0, 1)
        image = (image_denorm * 255).round().astype("uint8")
        pil_image = Image.fromarray(image[:, :, :3])

        # 使用 UUID 确保文件名唯一
        unique_filename = f"{uuid.uuid4()}.png"
        save_path = os.path.join(save_dir, unique_filename)
        pil_image.save(save_path)
        print(f"Image saved to {save_path}")
        print(f"Save image take {(1000 * (time.time() - save_start)):.1f}ms")