File size: 7,920 Bytes
e86efa6 de35c61 e86efa6 de35c61 e86efa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from typing import List, Union
import numpy as np
# import onnxruntime
import axengine
import torch
from PIL import Image
from transformers import CLIPTokenizer, CLIPTextModel, PreTrainedTokenizer, CLIPTextModelWithProjection
import time
import argparse
import uuid # 用于生成唯一文件名
import os
def get_args():
parser = argparse.ArgumentParser(
prog="StableDiffusion",
description="Generate picture with the input prompt"
)
parser.add_argument("--prompt", type=str, required=False, default="Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", help="the input text prompt")
parser.add_argument("--text_model_dir", type=str, required=False, default="./models/", help="Path to text encoder and tokenizer files")
parser.add_argument("--unet_model", type=str, required=False, default="./models/unet.axmodel", help="Path to unet axmodel model")
parser.add_argument("--vae_decoder_model", type=str, required=False, default="./models/vae_decoder.axmodel", help="Path to vae decoder axmodel model")
parser.add_argument("--time_input", type=str, required=False, default="./models/time_input_txt2img.npy", help="Path to time input file")
parser.add_argument("--save_dir", type=str, required=False, default="./txt2img_output_axe", help="Path to the output image file")
return parser.parse_args()
def maybe_convert_prompt(prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"): # noqa: F821
if not isinstance(prompt, List):
prompts = [prompt]
else:
prompts = prompt
prompts = [_maybe_convert_prompt(p, tokenizer) for p in prompts]
if not isinstance(prompt, List):
return prompts[0]
return prompts
def _maybe_convert_prompt(prompt: str, tokenizer: "PreTrainedTokenizer"): # noqa: F821
tokens = tokenizer.tokenize(prompt)
unique_tokens = set(tokens)
for token in unique_tokens:
if token in tokenizer.added_tokens_encoder:
replacement = token
i = 1
while f"{token}_{i}" in tokenizer.added_tokens_encoder:
replacement += f" {token}_{i}"
i += 1
prompt = prompt.replace(token, replacement)
return prompt
def get_embeds(prompt = "Portrait of a pretty girl", tokenizer_dir = "./models/tokenizer", text_encoder_dir = "./models/text_encoder"):
tokenizer = CLIPTokenizer.from_pretrained(tokenizer_dir)
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=77,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
text_encoder = axengine.InferenceSession(
os.path.join(
text_encoder_dir,
"sd15_text_encoder_sim.axmodel"
),
)
text_encoder_onnx_out = text_encoder.run(None, {"input_ids": text_input_ids.to("cpu").numpy().astype(np.int32)})[0]
prompt_embeds_npy = text_encoder_onnx_out
return prompt_embeds_npy
def get_alphas_cumprod():
betas = torch.linspace(0.00085 ** 0.5, 0.012 ** 0.5, 1000, dtype=torch.float32) ** 2
alphas = 1.0 - betas
alphas_cumprod = torch.cumprod(alphas, dim=0).detach().numpy()
final_alphas_cumprod = alphas_cumprod[0]
self_timesteps = np.arange(0, 1000)[::-1].copy().astype(np.int64)
return alphas_cumprod, final_alphas_cumprod, self_timesteps
if __name__ == '__main__':
args = get_args()
tokenizer_dir = args.text_model_dir + 'tokenizer'
text_encoder_dir = args.text_model_dir + 'text_encoder'
unet_model = args.unet_model
vae_decoder_model = args.vae_decoder_model
time_input = args.time_input
save_dir = args.save_dir
# 确保保存目录存在
os.makedirs(save_dir, exist_ok=True)
print(f"tokenizer: {tokenizer_dir}")
print(f"text_encoder: {text_encoder_dir}")
print(f"unet_model: {unet_model}")
print(f"vae_decoder_model: {vae_decoder_model}")
print(f"time_input: {time_input}")
print(f"save_dir: {save_dir}")
# 加载模型(只加载一次)
start = time.time()
unet_session_main = axengine.InferenceSession(unet_model)
vae_decoder = axengine.InferenceSession(vae_decoder_model)
print(f"load models take {(1000 * (time.time() - start)):.1f}ms")
# 主循环:支持多次输入 Prompt
while True:
# 用户输入 Prompt
prompt = input("\nEnter a prompt to generate an image (or type 'exit' to quit): ")
if prompt.lower() == 'exit':
print("Exiting...")
break
# Text Encoder
start = time.time()
prompt_embeds_npy = get_embeds(prompt, tokenizer_dir, text_encoder_dir)
print(f"text encoder take {(1000 * (time.time() - start)):.1f}ms")
# 初始化 Latent
latents_shape = [1, 4, 64, 64]
latent = torch.randn(latents_shape, generator=None, device="cpu", dtype=torch.float32,
layout=torch.strided).detach().numpy()
alphas_cumprod, final_alphas_cumprod, self_timesteps = get_alphas_cumprod()
# 加载 time_input 文件
time_input_data = np.load(time_input)
# U-Net Inference Loop
timesteps = np.array([999, 759, 499, 259]).astype(np.int64)
unet_loop_start = time.time()
for i, timestep in enumerate(timesteps):
unet_start = time.time()
noise_pred = unet_session_main.run(None, {
"sample": latent,
"/down_blocks.0/resnets.0/act_1/Mul_output_0": np.expand_dims(time_input_data[i], axis=0),
"encoder_hidden_states": prompt_embeds_npy
})[0]
print(f"unet once take {(1000 * (time.time() - unet_start)):.1f}ms")
sample = latent
model_output = noise_pred
if i < 3:
prev_timestep = timesteps[i + 1]
else:
prev_timestep = timestep
alpha_prod_t = alphas_cumprod[timestep]
alpha_prod_t_prev = alphas_cumprod[prev_timestep] if prev_timestep >= 0 else final_alphas_cumprod
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
scaled_timestep = timestep * 10
c_skip = 0.5 ** 2 / (scaled_timestep ** 2 + 0.5 ** 2)
c_out = scaled_timestep / (scaled_timestep ** 2 + 0.5 ** 2) ** 0.5
predicted_original_sample = (sample - (beta_prod_t ** 0.5) * model_output) / (alpha_prod_t ** 0.5)
denoised = c_out * predicted_original_sample + c_skip * sample
if i != 3:
noise = torch.randn(model_output.shape, generator=None, device="cpu", dtype=torch.float32,
layout=torch.strided).to("cpu").detach().numpy()
prev_sample = (alpha_prod_t_prev ** 0.5) * denoised + (beta_prod_t_prev ** 0.5) * noise
else:
prev_sample = denoised
latent = prev_sample
print(f"unet loop take {(1000 * (time.time() - unet_loop_start)):.1f}ms")
# VAE Inference
vae_start = time.time()
latent = latent / 0.18215
image = vae_decoder.run(None, {"x": latent})[0]
print(f"vae inference take {(1000 * (time.time() - vae_start)):.1f}ms")
# 保存结果
save_start = time.time()
image = np.transpose(image, (0, 2, 3, 1)).squeeze(axis=0)
image_denorm = np.clip(image / 2 + 0.5, 0, 1)
image = (image_denorm * 255).round().astype("uint8")
pil_image = Image.fromarray(image[:, :, :3])
# 使用 UUID 确保文件名唯一
unique_filename = f"{uuid.uuid4()}.png"
save_path = os.path.join(save_dir, unique_filename)
pil_image.save(save_path)
print(f"Image saved to {save_path}")
print(f"Save image take {(1000 * (time.time() - save_start)):.1f}ms")
|