Upload run_txt2img_axe_infer.py with huggingface_hub
Browse files- run_txt2img_axe_infer.py +2 -1
run_txt2img_axe_infer.py
CHANGED
@@ -134,6 +134,7 @@ if __name__ == '__main__':
|
|
134 |
# print(i, timestep)
|
135 |
|
136 |
unet_start = time.time()
|
|
|
137 |
noise_pred = unet_session_main.run(None, {"sample": latent, \
|
138 |
"/down_blocks.0/resnets.0/act_1/Mul_output_0": np.expand_dims(time_input[i], axis=0), \
|
139 |
"encoder_hidden_states": prompt_embeds_npy})[0]
|
@@ -175,7 +176,7 @@ if __name__ == '__main__':
|
|
175 |
# vae inference
|
176 |
vae_start = time.time()
|
177 |
latent = latent / 0.18215
|
178 |
-
image = vae_decoder.run(None, {"x": latent})[0]
|
179 |
print(f"vae inference take {(1000 * (time.time() - vae_start)):.1f}ms")
|
180 |
|
181 |
# save result
|
|
|
134 |
# print(i, timestep)
|
135 |
|
136 |
unet_start = time.time()
|
137 |
+
latent = latent.astype(np.float32)
|
138 |
noise_pred = unet_session_main.run(None, {"sample": latent, \
|
139 |
"/down_blocks.0/resnets.0/act_1/Mul_output_0": np.expand_dims(time_input[i], axis=0), \
|
140 |
"encoder_hidden_states": prompt_embeds_npy})[0]
|
|
|
176 |
# vae inference
|
177 |
vae_start = time.time()
|
178 |
latent = latent / 0.18215
|
179 |
+
image = vae_decoder.run(None, {"x": latent.astype(np.float32)})[0]
|
180 |
print(f"vae inference take {(1000 * (time.time() - vae_start)):.1f}ms")
|
181 |
|
182 |
# save result
|