Ananda Bollu
commited on
Commit
·
8cd6dcb
1
Parent(s):
c62696f
rename to pytorch_model.bin
Browse filesThe model Ab0/foo-model does not seem to have model files. Please check that it contains either `pytorch_model.bin` or `tf_model.h5`.
- model.pth → pytorch_model.bin +0 -0
- quickstart_tutorial.ipynb +731 -0
model.pth → pytorch_model.bin
RENAMED
|
File without changes
|
quickstart_tutorial.ipynb
ADDED
|
@@ -0,0 +1,731 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {
|
| 7 |
+
"collapsed": false
|
| 8 |
+
},
|
| 9 |
+
"outputs": [],
|
| 10 |
+
"source": [
|
| 11 |
+
"%matplotlib inline"
|
| 12 |
+
]
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "markdown",
|
| 16 |
+
"metadata": {},
|
| 17 |
+
"source": [
|
| 18 |
+
"\n",
|
| 19 |
+
"`Learn the Basics <intro.html>`_ ||\n",
|
| 20 |
+
"**Quickstart** ||\n",
|
| 21 |
+
"`Tensors <tensorqs_tutorial.html>`_ ||\n",
|
| 22 |
+
"`Datasets & DataLoaders <data_tutorial.html>`_ ||\n",
|
| 23 |
+
"`Transforms <transforms_tutorial.html>`_ ||\n",
|
| 24 |
+
"`Build Model <buildmodel_tutorial.html>`_ ||\n",
|
| 25 |
+
"`Autograd <autogradqs_tutorial.html>`_ ||\n",
|
| 26 |
+
"`Optimization <optimization_tutorial.html>`_ ||\n",
|
| 27 |
+
"`Save & Load Model <saveloadrun_tutorial.html>`_\n",
|
| 28 |
+
"\n",
|
| 29 |
+
"Quickstart\n",
|
| 30 |
+
"===================\n",
|
| 31 |
+
"This section runs through the API for common tasks in machine learning. Refer to the links in each section to dive deeper.\n",
|
| 32 |
+
"\n",
|
| 33 |
+
"Working with data\n",
|
| 34 |
+
"-----------------\n",
|
| 35 |
+
"PyTorch has two `primitives to work with data <https://pytorch.org/docs/stable/data.html>`_:\n",
|
| 36 |
+
"``torch.utils.data.DataLoader`` and ``torch.utils.data.Dataset``.\n",
|
| 37 |
+
"``Dataset`` stores the samples and their corresponding labels, and ``DataLoader`` wraps an iterable around\n",
|
| 38 |
+
"the ``Dataset``.\n",
|
| 39 |
+
"\n",
|
| 40 |
+
"\n"
|
| 41 |
+
]
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"cell_type": "code",
|
| 45 |
+
"execution_count": 2,
|
| 46 |
+
"metadata": {
|
| 47 |
+
"collapsed": false
|
| 48 |
+
},
|
| 49 |
+
"outputs": [],
|
| 50 |
+
"source": [
|
| 51 |
+
"import torch\n",
|
| 52 |
+
"from torch import nn\n",
|
| 53 |
+
"from torch.utils.data import DataLoader\n",
|
| 54 |
+
"from torchvision import datasets\n",
|
| 55 |
+
"from torchvision.transforms import ToTensor, Lambda, Compose\n",
|
| 56 |
+
"import matplotlib.pyplot as plt\n",
|
| 57 |
+
"from huggingface_hub import push_to_hub_keras"
|
| 58 |
+
]
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"cell_type": "markdown",
|
| 62 |
+
"metadata": {},
|
| 63 |
+
"source": [
|
| 64 |
+
"PyTorch offers domain-specific libraries such as `TorchText <https://pytorch.org/text/stable/index.html>`_,\n",
|
| 65 |
+
"`TorchVision <https://pytorch.org/vision/stable/index.html>`_, and `TorchAudio <https://pytorch.org/audio/stable/index.html>`_,\n",
|
| 66 |
+
"all of which include datasets. For this tutorial, we will be using a TorchVision dataset.\n",
|
| 67 |
+
"\n",
|
| 68 |
+
"The ``torchvision.datasets`` module contains ``Dataset`` objects for many real-world vision data like\n",
|
| 69 |
+
"CIFAR, COCO (`full list here <https://pytorch.org/vision/stable/datasets.html>`_). In this tutorial, we\n",
|
| 70 |
+
"use the FashionMNIST dataset. Every TorchVision ``Dataset`` includes two arguments: ``transform`` and\n",
|
| 71 |
+
"``target_transform`` to modify the samples and labels respectively.\n",
|
| 72 |
+
"\n"
|
| 73 |
+
]
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"cell_type": "code",
|
| 77 |
+
"execution_count": 3,
|
| 78 |
+
"metadata": {
|
| 79 |
+
"collapsed": false
|
| 80 |
+
},
|
| 81 |
+
"outputs": [],
|
| 82 |
+
"source": [
|
| 83 |
+
"# Download training data from open datasets.\n",
|
| 84 |
+
"training_data = datasets.FashionMNIST(\n",
|
| 85 |
+
" root=\"data\",\n",
|
| 86 |
+
" train=True,\n",
|
| 87 |
+
" download=True,\n",
|
| 88 |
+
" transform=ToTensor(),\n",
|
| 89 |
+
")\n",
|
| 90 |
+
"\n",
|
| 91 |
+
"# Download test data from open datasets.\n",
|
| 92 |
+
"test_data = datasets.FashionMNIST(\n",
|
| 93 |
+
" root=\"data\",\n",
|
| 94 |
+
" train=False,\n",
|
| 95 |
+
" download=True,\n",
|
| 96 |
+
" transform=ToTensor(),\n",
|
| 97 |
+
")"
|
| 98 |
+
]
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"cell_type": "markdown",
|
| 102 |
+
"metadata": {},
|
| 103 |
+
"source": [
|
| 104 |
+
"We pass the ``Dataset`` as an argument to ``DataLoader``. This wraps an iterable over our dataset, and supports\n",
|
| 105 |
+
"automatic batching, sampling, shuffling and multiprocess data loading. Here we define a batch size of 64, i.e. each element\n",
|
| 106 |
+
"in the dataloader iterable will return a batch of 64 features and labels.\n",
|
| 107 |
+
"\n"
|
| 108 |
+
]
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"cell_type": "code",
|
| 112 |
+
"execution_count": 4,
|
| 113 |
+
"metadata": {
|
| 114 |
+
"collapsed": false
|
| 115 |
+
},
|
| 116 |
+
"outputs": [
|
| 117 |
+
{
|
| 118 |
+
"name": "stdout",
|
| 119 |
+
"output_type": "stream",
|
| 120 |
+
"text": [
|
| 121 |
+
"Shape of X [N, C, H, W]: torch.Size([64, 1, 28, 28])\n",
|
| 122 |
+
"Shape of y: torch.Size([64]) torch.int64\n"
|
| 123 |
+
]
|
| 124 |
+
}
|
| 125 |
+
],
|
| 126 |
+
"source": [
|
| 127 |
+
"batch_size = 64\n",
|
| 128 |
+
"\n",
|
| 129 |
+
"# Create data loaders.\n",
|
| 130 |
+
"train_dataloader = DataLoader(training_data, batch_size=batch_size)\n",
|
| 131 |
+
"test_dataloader = DataLoader(test_data, batch_size=batch_size)\n",
|
| 132 |
+
"\n",
|
| 133 |
+
"for X, y in test_dataloader:\n",
|
| 134 |
+
" print(\"Shape of X [N, C, H, W]: \", X.shape)\n",
|
| 135 |
+
" print(\"Shape of y: \", y.shape, y.dtype)\n",
|
| 136 |
+
" break"
|
| 137 |
+
]
|
| 138 |
+
},
|
| 139 |
+
{
|
| 140 |
+
"cell_type": "markdown",
|
| 141 |
+
"metadata": {},
|
| 142 |
+
"source": [
|
| 143 |
+
"Read more about `loading data in PyTorch <data_tutorial.html>`_.\n",
|
| 144 |
+
"\n",
|
| 145 |
+
"\n"
|
| 146 |
+
]
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"cell_type": "markdown",
|
| 150 |
+
"metadata": {},
|
| 151 |
+
"source": [
|
| 152 |
+
"--------------\n",
|
| 153 |
+
"\n",
|
| 154 |
+
"\n"
|
| 155 |
+
]
|
| 156 |
+
},
|
| 157 |
+
{
|
| 158 |
+
"cell_type": "markdown",
|
| 159 |
+
"metadata": {},
|
| 160 |
+
"source": [
|
| 161 |
+
"Creating Models\n",
|
| 162 |
+
"------------------\n",
|
| 163 |
+
"To define a neural network in PyTorch, we create a class that inherits\n",
|
| 164 |
+
"from `nn.Module <https://pytorch.org/docs/stable/generated/torch.nn.Module.html>`_. We define the layers of the network\n",
|
| 165 |
+
"in the ``__init__`` function and specify how data will pass through the network in the ``forward`` function. To accelerate\n",
|
| 166 |
+
"operations in the neural network, we move it to the GPU if available.\n",
|
| 167 |
+
"\n"
|
| 168 |
+
]
|
| 169 |
+
},
|
| 170 |
+
{
|
| 171 |
+
"cell_type": "code",
|
| 172 |
+
"execution_count": 5,
|
| 173 |
+
"metadata": {
|
| 174 |
+
"collapsed": false
|
| 175 |
+
},
|
| 176 |
+
"outputs": [
|
| 177 |
+
{
|
| 178 |
+
"name": "stdout",
|
| 179 |
+
"output_type": "stream",
|
| 180 |
+
"text": [
|
| 181 |
+
"Using cpu device\n",
|
| 182 |
+
"NeuralNetwork(\n",
|
| 183 |
+
" (flatten): Flatten(start_dim=1, end_dim=-1)\n",
|
| 184 |
+
" (linear_relu_stack): Sequential(\n",
|
| 185 |
+
" (0): Linear(in_features=784, out_features=512, bias=True)\n",
|
| 186 |
+
" (1): ReLU()\n",
|
| 187 |
+
" (2): Linear(in_features=512, out_features=512, bias=True)\n",
|
| 188 |
+
" (3): ReLU()\n",
|
| 189 |
+
" (4): Linear(in_features=512, out_features=10, bias=True)\n",
|
| 190 |
+
" )\n",
|
| 191 |
+
")\n"
|
| 192 |
+
]
|
| 193 |
+
}
|
| 194 |
+
],
|
| 195 |
+
"source": [
|
| 196 |
+
"# Get cpu or gpu device for training.\n",
|
| 197 |
+
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
| 198 |
+
"print(f\"Using {device} device\")\n",
|
| 199 |
+
"\n",
|
| 200 |
+
"# Define model\n",
|
| 201 |
+
"class NeuralNetwork(nn.Module):\n",
|
| 202 |
+
" def __init__(self):\n",
|
| 203 |
+
" super(NeuralNetwork, self).__init__()\n",
|
| 204 |
+
" self.flatten = nn.Flatten()\n",
|
| 205 |
+
" self.linear_relu_stack = nn.Sequential(\n",
|
| 206 |
+
" nn.Linear(28*28, 512),\n",
|
| 207 |
+
" nn.ReLU(),\n",
|
| 208 |
+
" nn.Linear(512, 512),\n",
|
| 209 |
+
" nn.ReLU(),\n",
|
| 210 |
+
" nn.Linear(512, 10)\n",
|
| 211 |
+
" )\n",
|
| 212 |
+
"\n",
|
| 213 |
+
" def forward(self, x):\n",
|
| 214 |
+
" x = self.flatten(x)\n",
|
| 215 |
+
" logits = self.linear_relu_stack(x)\n",
|
| 216 |
+
" return logits\n",
|
| 217 |
+
"\n",
|
| 218 |
+
"model = NeuralNetwork().to(device)\n",
|
| 219 |
+
"print(model)"
|
| 220 |
+
]
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"cell_type": "markdown",
|
| 224 |
+
"metadata": {},
|
| 225 |
+
"source": [
|
| 226 |
+
"Read more about `building neural networks in PyTorch <buildmodel_tutorial.html>`_.\n",
|
| 227 |
+
"\n",
|
| 228 |
+
"\n"
|
| 229 |
+
]
|
| 230 |
+
},
|
| 231 |
+
{
|
| 232 |
+
"cell_type": "markdown",
|
| 233 |
+
"metadata": {},
|
| 234 |
+
"source": [
|
| 235 |
+
"--------------\n",
|
| 236 |
+
"\n",
|
| 237 |
+
"\n"
|
| 238 |
+
]
|
| 239 |
+
},
|
| 240 |
+
{
|
| 241 |
+
"cell_type": "markdown",
|
| 242 |
+
"metadata": {},
|
| 243 |
+
"source": [
|
| 244 |
+
"Optimizing the Model Parameters\n",
|
| 245 |
+
"----------------------------------------\n",
|
| 246 |
+
"To train a model, we need a `loss function <https://pytorch.org/docs/stable/nn.html#loss-functions>`_\n",
|
| 247 |
+
"and an `optimizer <https://pytorch.org/docs/stable/optim.html>`_.\n",
|
| 248 |
+
"\n"
|
| 249 |
+
]
|
| 250 |
+
},
|
| 251 |
+
{
|
| 252 |
+
"cell_type": "code",
|
| 253 |
+
"execution_count": 6,
|
| 254 |
+
"metadata": {
|
| 255 |
+
"collapsed": false
|
| 256 |
+
},
|
| 257 |
+
"outputs": [],
|
| 258 |
+
"source": [
|
| 259 |
+
"loss_fn = nn.CrossEntropyLoss()\n",
|
| 260 |
+
"optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)"
|
| 261 |
+
]
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"cell_type": "markdown",
|
| 265 |
+
"metadata": {},
|
| 266 |
+
"source": [
|
| 267 |
+
"In a single training loop, the model makes predictions on the training dataset (fed to it in batches), and\n",
|
| 268 |
+
"backpropagates the prediction error to adjust the model's parameters.\n",
|
| 269 |
+
"\n"
|
| 270 |
+
]
|
| 271 |
+
},
|
| 272 |
+
{
|
| 273 |
+
"cell_type": "code",
|
| 274 |
+
"execution_count": 7,
|
| 275 |
+
"metadata": {
|
| 276 |
+
"collapsed": false
|
| 277 |
+
},
|
| 278 |
+
"outputs": [],
|
| 279 |
+
"source": [
|
| 280 |
+
"def train(dataloader, model, loss_fn, optimizer):\n",
|
| 281 |
+
" size = len(dataloader.dataset)\n",
|
| 282 |
+
" model.train()\n",
|
| 283 |
+
" for batch, (X, y) in enumerate(dataloader):\n",
|
| 284 |
+
" X, y = X.to(device), y.to(device)\n",
|
| 285 |
+
"\n",
|
| 286 |
+
" # Compute prediction error\n",
|
| 287 |
+
" pred = model(X)\n",
|
| 288 |
+
" loss = loss_fn(pred, y)\n",
|
| 289 |
+
"\n",
|
| 290 |
+
" # Backpropagation\n",
|
| 291 |
+
" optimizer.zero_grad()\n",
|
| 292 |
+
" loss.backward()\n",
|
| 293 |
+
" optimizer.step()\n",
|
| 294 |
+
"\n",
|
| 295 |
+
" if batch % 100 == 0:\n",
|
| 296 |
+
" loss, current = loss.item(), batch * len(X)\n",
|
| 297 |
+
" print(f\"loss: {loss:>7f} [{current:>5d}/{size:>5d}]\")"
|
| 298 |
+
]
|
| 299 |
+
},
|
| 300 |
+
{
|
| 301 |
+
"cell_type": "markdown",
|
| 302 |
+
"metadata": {},
|
| 303 |
+
"source": [
|
| 304 |
+
"We also check the model's performance against the test dataset to ensure it is learning.\n",
|
| 305 |
+
"\n"
|
| 306 |
+
]
|
| 307 |
+
},
|
| 308 |
+
{
|
| 309 |
+
"cell_type": "code",
|
| 310 |
+
"execution_count": 8,
|
| 311 |
+
"metadata": {
|
| 312 |
+
"collapsed": false
|
| 313 |
+
},
|
| 314 |
+
"outputs": [],
|
| 315 |
+
"source": [
|
| 316 |
+
"def test(dataloader, model, loss_fn):\n",
|
| 317 |
+
" size = len(dataloader.dataset)\n",
|
| 318 |
+
" num_batches = len(dataloader)\n",
|
| 319 |
+
" model.eval()\n",
|
| 320 |
+
" test_loss, correct = 0, 0\n",
|
| 321 |
+
" with torch.no_grad():\n",
|
| 322 |
+
" for X, y in dataloader:\n",
|
| 323 |
+
" X, y = X.to(device), y.to(device)\n",
|
| 324 |
+
" pred = model(X)\n",
|
| 325 |
+
" test_loss += loss_fn(pred, y).item()\n",
|
| 326 |
+
" correct += (pred.argmax(1) == y).type(torch.float).sum().item()\n",
|
| 327 |
+
" test_loss /= num_batches\n",
|
| 328 |
+
" correct /= size\n",
|
| 329 |
+
" print(f\"Test Error: \\n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \\n\")"
|
| 330 |
+
]
|
| 331 |
+
},
|
| 332 |
+
{
|
| 333 |
+
"cell_type": "markdown",
|
| 334 |
+
"metadata": {},
|
| 335 |
+
"source": [
|
| 336 |
+
"The training process is conducted over several iterations (*epochs*). During each epoch, the model learns\n",
|
| 337 |
+
"parameters to make better predictions. We print the model's accuracy and loss at each epoch; we'd like to see the\n",
|
| 338 |
+
"accuracy increase and the loss decrease with every epoch.\n",
|
| 339 |
+
"\n"
|
| 340 |
+
]
|
| 341 |
+
},
|
| 342 |
+
{
|
| 343 |
+
"cell_type": "code",
|
| 344 |
+
"execution_count": 9,
|
| 345 |
+
"metadata": {
|
| 346 |
+
"collapsed": false
|
| 347 |
+
},
|
| 348 |
+
"outputs": [
|
| 349 |
+
{
|
| 350 |
+
"name": "stdout",
|
| 351 |
+
"output_type": "stream",
|
| 352 |
+
"text": [
|
| 353 |
+
"Epoch 1\n",
|
| 354 |
+
"-------------------------------\n",
|
| 355 |
+
"loss: 2.293067 [ 0/60000]\n",
|
| 356 |
+
"loss: 2.287422 [ 6400/60000]\n",
|
| 357 |
+
"loss: 2.265790 [12800/60000]\n",
|
| 358 |
+
"loss: 2.274793 [19200/60000]\n",
|
| 359 |
+
"loss: 2.257332 [25600/60000]\n",
|
| 360 |
+
"loss: 2.222204 [32000/60000]\n",
|
| 361 |
+
"loss: 2.240200 [38400/60000]\n",
|
| 362 |
+
"loss: 2.206084 [44800/60000]\n",
|
| 363 |
+
"loss: 2.190236 [51200/60000]\n",
|
| 364 |
+
"loss: 2.176934 [57600/60000]\n",
|
| 365 |
+
"Test Error: \n",
|
| 366 |
+
" Accuracy: 42.4%, Avg loss: 2.162450 \n",
|
| 367 |
+
"\n",
|
| 368 |
+
"Epoch 2\n",
|
| 369 |
+
"-------------------------------\n",
|
| 370 |
+
"loss: 2.161891 [ 0/60000]\n",
|
| 371 |
+
"loss: 2.160867 [ 6400/60000]\n",
|
| 372 |
+
"loss: 2.099223 [12800/60000]\n",
|
| 373 |
+
"loss: 2.127940 [19200/60000]\n",
|
| 374 |
+
"loss: 2.089684 [25600/60000]\n",
|
| 375 |
+
"loss: 2.018054 [32000/60000]\n",
|
| 376 |
+
"loss: 2.060461 [38400/60000]\n",
|
| 377 |
+
"loss: 1.981958 [44800/60000]\n",
|
| 378 |
+
"loss: 1.971331 [51200/60000]\n",
|
| 379 |
+
"loss: 1.930486 [57600/60000]\n",
|
| 380 |
+
"Test Error: \n",
|
| 381 |
+
" Accuracy: 58.1%, Avg loss: 1.909495 \n",
|
| 382 |
+
"\n",
|
| 383 |
+
"Epoch 3\n",
|
| 384 |
+
"-------------------------------\n",
|
| 385 |
+
"loss: 1.930542 [ 0/60000]\n",
|
| 386 |
+
"loss: 1.913976 [ 6400/60000]\n",
|
| 387 |
+
"loss: 1.788895 [12800/60000]\n",
|
| 388 |
+
"loss: 1.838503 [19200/60000]\n",
|
| 389 |
+
"loss: 1.757226 [25600/60000]\n",
|
| 390 |
+
"loss: 1.682464 [32000/60000]\n",
|
| 391 |
+
"loss: 1.722755 [38400/60000]\n",
|
| 392 |
+
"loss: 1.617113 [44800/60000]\n",
|
| 393 |
+
"loss: 1.632282 [51200/60000]\n",
|
| 394 |
+
"loss: 1.548769 [57600/60000]\n",
|
| 395 |
+
"Test Error: \n",
|
| 396 |
+
" Accuracy: 61.0%, Avg loss: 1.543196 \n",
|
| 397 |
+
"\n",
|
| 398 |
+
"Epoch 4\n",
|
| 399 |
+
"-------------------------------\n",
|
| 400 |
+
"loss: 1.601020 [ 0/60000]\n",
|
| 401 |
+
"loss: 1.574128 [ 6400/60000]\n",
|
| 402 |
+
"loss: 1.412696 [12800/60000]\n",
|
| 403 |
+
"loss: 1.496537 [19200/60000]\n",
|
| 404 |
+
"loss: 1.391789 [25600/60000]\n",
|
| 405 |
+
"loss: 1.360881 [32000/60000]\n",
|
| 406 |
+
"loss: 1.398112 [38400/60000]\n",
|
| 407 |
+
"loss: 1.316551 [44800/60000]\n",
|
| 408 |
+
"loss: 1.347136 [51200/60000]\n",
|
| 409 |
+
"loss: 1.253991 [57600/60000]\n",
|
| 410 |
+
"Test Error: \n",
|
| 411 |
+
" Accuracy: 62.8%, Avg loss: 1.267020 \n",
|
| 412 |
+
"\n",
|
| 413 |
+
"Epoch 5\n",
|
| 414 |
+
"-------------------------------\n",
|
| 415 |
+
"loss: 1.336873 [ 0/60000]\n",
|
| 416 |
+
"loss: 1.324502 [ 6400/60000]\n",
|
| 417 |
+
"loss: 1.153551 [12800/60000]\n",
|
| 418 |
+
"loss: 1.265215 [19200/60000]\n",
|
| 419 |
+
"loss: 1.149221 [25600/60000]\n",
|
| 420 |
+
"loss: 1.156962 [32000/60000]\n",
|
| 421 |
+
"loss: 1.194912 [38400/60000]\n",
|
| 422 |
+
"loss: 1.133846 [44800/60000]\n",
|
| 423 |
+
"loss: 1.164861 [51200/60000]\n",
|
| 424 |
+
"loss: 1.080542 [57600/60000]\n",
|
| 425 |
+
"Test Error: \n",
|
| 426 |
+
" Accuracy: 64.1%, Avg loss: 1.094896 \n",
|
| 427 |
+
"\n",
|
| 428 |
+
"Done!\n"
|
| 429 |
+
]
|
| 430 |
+
}
|
| 431 |
+
],
|
| 432 |
+
"source": [
|
| 433 |
+
"epochs = 5\n",
|
| 434 |
+
"for t in range(epochs):\n",
|
| 435 |
+
" print(f\"Epoch {t+1}\\n-------------------------------\")\n",
|
| 436 |
+
" train(train_dataloader, model, loss_fn, optimizer)\n",
|
| 437 |
+
" test(test_dataloader, model, loss_fn)\n",
|
| 438 |
+
"print(\"Done!\")"
|
| 439 |
+
]
|
| 440 |
+
},
|
| 441 |
+
{
|
| 442 |
+
"cell_type": "markdown",
|
| 443 |
+
"metadata": {},
|
| 444 |
+
"source": [
|
| 445 |
+
"Read more about `Training your model <optimization_tutorial.html>`_.\n",
|
| 446 |
+
"\n",
|
| 447 |
+
"\n"
|
| 448 |
+
]
|
| 449 |
+
},
|
| 450 |
+
{
|
| 451 |
+
"cell_type": "markdown",
|
| 452 |
+
"metadata": {},
|
| 453 |
+
"source": [
|
| 454 |
+
"--------------\n",
|
| 455 |
+
"\n",
|
| 456 |
+
"\n"
|
| 457 |
+
]
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"cell_type": "markdown",
|
| 461 |
+
"metadata": {},
|
| 462 |
+
"source": [
|
| 463 |
+
"Saving Models\n",
|
| 464 |
+
"-------------\n",
|
| 465 |
+
"A common way to save a model is to serialize the internal state dictionary (containing the model parameters).\n",
|
| 466 |
+
"\n"
|
| 467 |
+
]
|
| 468 |
+
},
|
| 469 |
+
{
|
| 470 |
+
"cell_type": "code",
|
| 471 |
+
"execution_count": 10,
|
| 472 |
+
"metadata": {
|
| 473 |
+
"collapsed": false
|
| 474 |
+
},
|
| 475 |
+
"outputs": [
|
| 476 |
+
{
|
| 477 |
+
"name": "stdout",
|
| 478 |
+
"output_type": "stream",
|
| 479 |
+
"text": [
|
| 480 |
+
"Saved PyTorch Model State to model.pth\n"
|
| 481 |
+
]
|
| 482 |
+
}
|
| 483 |
+
],
|
| 484 |
+
"source": [
|
| 485 |
+
"torch.save(model.state_dict(), \"pytorch_model.bin\")\n",
|
| 486 |
+
"print(\"Saved PyTorch Model State to pytorch_model.bin\")"
|
| 487 |
+
]
|
| 488 |
+
},
|
| 489 |
+
{
|
| 490 |
+
"cell_type": "markdown",
|
| 491 |
+
"metadata": {},
|
| 492 |
+
"source": [
|
| 493 |
+
"Loading Models\n",
|
| 494 |
+
"----------------------------\n",
|
| 495 |
+
"\n",
|
| 496 |
+
"The process for loading a model includes re-creating the model structure and loading\n",
|
| 497 |
+
"the state dictionary into it.\n",
|
| 498 |
+
"\n"
|
| 499 |
+
]
|
| 500 |
+
},
|
| 501 |
+
{
|
| 502 |
+
"cell_type": "code",
|
| 503 |
+
"execution_count": 13,
|
| 504 |
+
"metadata": {
|
| 505 |
+
"collapsed": false
|
| 506 |
+
},
|
| 507 |
+
"outputs": [
|
| 508 |
+
{
|
| 509 |
+
"data": {
|
| 510 |
+
"text/plain": [
|
| 511 |
+
"<All keys matched successfully>"
|
| 512 |
+
]
|
| 513 |
+
},
|
| 514 |
+
"execution_count": 13,
|
| 515 |
+
"metadata": {},
|
| 516 |
+
"output_type": "execute_result"
|
| 517 |
+
}
|
| 518 |
+
],
|
| 519 |
+
"source": [
|
| 520 |
+
"model = NeuralNetwork()\n",
|
| 521 |
+
"model.load_state_dict(torch.load(\"model.pth\"))"
|
| 522 |
+
]
|
| 523 |
+
},
|
| 524 |
+
{
|
| 525 |
+
"cell_type": "markdown",
|
| 526 |
+
"metadata": {},
|
| 527 |
+
"source": [
|
| 528 |
+
"This model can now be used to make predictions.\n",
|
| 529 |
+
"\n"
|
| 530 |
+
]
|
| 531 |
+
},
|
| 532 |
+
{
|
| 533 |
+
"cell_type": "code",
|
| 534 |
+
"execution_count": 15,
|
| 535 |
+
"metadata": {
|
| 536 |
+
"collapsed": false
|
| 537 |
+
},
|
| 538 |
+
"outputs": [
|
| 539 |
+
{
|
| 540 |
+
"name": "stdout",
|
| 541 |
+
"output_type": "stream",
|
| 542 |
+
"text": [
|
| 543 |
+
"Predicted: \"Shirt\", Actual: \"Shirt\"\n"
|
| 544 |
+
]
|
| 545 |
+
}
|
| 546 |
+
],
|
| 547 |
+
"source": [
|
| 548 |
+
"classes = [\n",
|
| 549 |
+
" \"T-shirt/top\",\n",
|
| 550 |
+
" \"Trouser\",\n",
|
| 551 |
+
" \"Pullover\",\n",
|
| 552 |
+
" \"Dress\",\n",
|
| 553 |
+
" \"Coat\",\n",
|
| 554 |
+
" \"Sandal\",\n",
|
| 555 |
+
" \"Shirt\",\n",
|
| 556 |
+
" \"Sneaker\",\n",
|
| 557 |
+
" \"Bag\",\n",
|
| 558 |
+
" \"Ankle boot\",\n",
|
| 559 |
+
"]\n",
|
| 560 |
+
"\n",
|
| 561 |
+
"model.eval()\n",
|
| 562 |
+
"x, y = test_data[4][0], test_data[4][1]\n",
|
| 563 |
+
"with torch.no_grad():\n",
|
| 564 |
+
" pred = model(x)\n",
|
| 565 |
+
" predicted, actual = classes[pred[0].argmax(0)], classes[y]\n",
|
| 566 |
+
" print(f'Predicted: \"{predicted}\", Actual: \"{actual}\"')"
|
| 567 |
+
]
|
| 568 |
+
},
|
| 569 |
+
{
|
| 570 |
+
"cell_type": "code",
|
| 571 |
+
"execution_count": 16,
|
| 572 |
+
"metadata": {},
|
| 573 |
+
"outputs": [
|
| 574 |
+
{
|
| 575 |
+
"data": {
|
| 576 |
+
"text/plain": [
|
| 577 |
+
"tensor([[[0.0000, 0.0000, 0.0000, 0.0078, 0.0000, 0.0039, 0.0039, 0.0000,\n",
|
| 578 |
+
" 0.0000, 0.0000, 0.0000, 0.2235, 0.2627, 0.2863, 0.2980, 0.2980,\n",
|
| 579 |
+
" 0.3255, 0.2431, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
|
| 580 |
+
" 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
| 581 |
+
" [0.0000, 0.0000, 0.0000, 0.0039, 0.0039, 0.0039, 0.0000, 0.0000,\n",
|
| 582 |
+
" 0.0510, 0.3098, 0.5020, 0.7882, 0.6353, 0.6314, 0.6784, 0.7529,\n",
|
| 583 |
+
" 0.6745, 0.7098, 0.7216, 0.4235, 0.1176, 0.0000, 0.0000, 0.0000,\n",
|
| 584 |
+
" 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
| 585 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0039, 0.0000, 0.0000, 0.4000,\n",
|
| 586 |
+
" 0.5451, 0.5569, 0.4039, 0.4510, 0.6353, 0.6039, 0.6471, 0.6000,\n",
|
| 587 |
+
" 0.5451, 0.5059, 0.5882, 0.5412, 0.6706, 0.6314, 0.1020, 0.0000,\n",
|
| 588 |
+
" 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
| 589 |
+
" [0.0000, 0.0000, 0.0000, 0.0039, 0.0000, 0.0000, 0.4157, 0.4863,\n",
|
| 590 |
+
" 0.4235, 0.4039, 0.4157, 0.3647, 0.3922, 0.7059, 0.6118, 0.5765,\n",
|
| 591 |
+
" 0.5412, 0.3333, 0.6157, 0.4471, 0.4863, 0.6039, 0.6157, 0.0000,\n",
|
| 592 |
+
" 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
| 593 |
+
" [0.0000, 0.0000, 0.0000, 0.0078, 0.0000, 0.1137, 0.5255, 0.3961,\n",
|
| 594 |
+
" 0.4431, 0.4235, 0.3804, 0.4549, 0.3176, 0.5725, 0.7176, 0.6431,\n",
|
| 595 |
+
" 0.4353, 0.5725, 0.5137, 0.4784, 0.5176, 0.5686, 0.6627, 0.3647,\n",
|
| 596 |
+
" 0.0000, 0.0039, 0.0000, 0.0000],\n",
|
| 597 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.2549, 0.5137, 0.4118,\n",
|
| 598 |
+
" 0.3961, 0.4235, 0.3922, 0.4078, 0.3804, 0.2902, 0.8078, 0.6824,\n",
|
| 599 |
+
" 0.4510, 0.5882, 0.4235, 0.4667, 0.5725, 0.5961, 0.6353, 0.5529,\n",
|
| 600 |
+
" 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
| 601 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.4235, 0.4824, 0.4392,\n",
|
| 602 |
+
" 0.4157, 0.3843, 0.3922, 0.3961, 0.4353, 0.2824, 0.5333, 0.5176,\n",
|
| 603 |
+
" 0.4392, 0.4510, 0.4275, 0.5569, 0.5882, 0.6275, 0.6353, 0.7647,\n",
|
| 604 |
+
" 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
| 605 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.5294, 0.4784, 0.4667,\n",
|
| 606 |
+
" 0.4392, 0.3255, 0.3647, 0.3804, 0.4157, 0.4510, 0.3569, 0.4275,\n",
|
| 607 |
+
" 0.3255, 0.4275, 0.4902, 0.6471, 0.5490, 0.7569, 0.6275, 0.6902,\n",
|
| 608 |
+
" 0.0235, 0.0000, 0.0000, 0.0000],\n",
|
| 609 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0902, 0.5294, 0.5176, 0.5843,\n",
|
| 610 |
+
" 0.4078, 0.3059, 0.3765, 0.3804, 0.4039, 0.4235, 0.4235, 0.4510,\n",
|
| 611 |
+
" 0.3294, 0.4471, 0.5843, 0.6196, 0.5765, 0.8196, 0.6275, 0.6980,\n",
|
| 612 |
+
" 0.2039, 0.0000, 0.0000, 0.0000],\n",
|
| 613 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.2235, 0.4863, 0.5137, 0.6275,\n",
|
| 614 |
+
" 0.4039, 0.3765, 0.3961, 0.4275, 0.4275, 0.4353, 0.4235, 0.4471,\n",
|
| 615 |
+
" 0.4157, 0.4431, 0.6118, 0.6392, 0.6118, 0.7686, 0.6549, 0.6824,\n",
|
| 616 |
+
" 0.3333, 0.0000, 0.0000, 0.0000],\n",
|
| 617 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.3373, 0.4549, 0.4941, 0.6275,\n",
|
| 618 |
+
" 0.5176, 0.4000, 0.3765, 0.4078, 0.4196, 0.3843, 0.3647, 0.4824,\n",
|
| 619 |
+
" 0.4549, 0.4392, 0.5843, 0.6275, 0.7098, 0.7294, 0.6353, 0.6353,\n",
|
| 620 |
+
" 0.4824, 0.0000, 0.0000, 0.0000],\n",
|
| 621 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.4392, 0.4471, 0.4392, 0.6549,\n",
|
| 622 |
+
" 0.5725, 0.3922, 0.3922, 0.3961, 0.4196, 0.3765, 0.3922, 0.4941,\n",
|
| 623 |
+
" 0.4039, 0.4706, 0.5529, 0.6196, 0.6549, 0.7333, 0.5765, 0.5804,\n",
|
| 624 |
+
" 0.6667, 0.0000, 0.0000, 0.0000],\n",
|
| 625 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.4863, 0.4627, 0.3961, 0.7725,\n",
|
| 626 |
+
" 0.3490, 0.3961, 0.3922, 0.3765, 0.4235, 0.4039, 0.4235, 0.4784,\n",
|
| 627 |
+
" 0.4196, 0.4980, 0.5451, 0.5882, 0.4667, 0.7686, 0.5686, 0.5569,\n",
|
| 628 |
+
" 0.7020, 0.0000, 0.0000, 0.0000],\n",
|
| 629 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.5137, 0.4510, 0.3804, 0.7765,\n",
|
| 630 |
+
" 0.1843, 0.4235, 0.3765, 0.3765, 0.4157, 0.4667, 0.4000, 0.4706,\n",
|
| 631 |
+
" 0.4039, 0.4824, 0.5490, 0.5882, 0.3176, 0.8078, 0.5725, 0.5294,\n",
|
| 632 |
+
" 0.7608, 0.0000, 0.0000, 0.0000],\n",
|
| 633 |
+
" [0.0000, 0.0000, 0.0000, 0.0157, 0.5333, 0.4627, 0.3843, 0.7569,\n",
|
| 634 |
+
" 0.0824, 0.4275, 0.3765, 0.4157, 0.4000, 0.5059, 0.3922, 0.4667,\n",
|
| 635 |
+
" 0.4000, 0.4627, 0.5529, 0.6000, 0.1765, 0.8471, 0.5804, 0.5451,\n",
|
| 636 |
+
" 0.8039, 0.0471, 0.0000, 0.0000],\n",
|
| 637 |
+
" [0.0000, 0.0000, 0.0000, 0.0941, 0.5373, 0.4588, 0.3961, 0.7333,\n",
|
| 638 |
+
" 0.0980, 0.4431, 0.3608, 0.4392, 0.3686, 0.4706, 0.4118, 0.4980,\n",
|
| 639 |
+
" 0.3804, 0.4510, 0.5569, 0.5882, 0.0745, 0.8353, 0.5804, 0.5137,\n",
|
| 640 |
+
" 0.8000, 0.1412, 0.0000, 0.0000],\n",
|
| 641 |
+
" [0.0000, 0.0000, 0.0000, 0.1569, 0.5529, 0.4275, 0.4588, 0.6196,\n",
|
| 642 |
+
" 0.0471, 0.4863, 0.3529, 0.4549, 0.3765, 0.4588, 0.4431, 0.5333,\n",
|
| 643 |
+
" 0.3686, 0.4353, 0.5765, 0.6392, 0.1216, 0.7490, 0.5725, 0.5255,\n",
|
| 644 |
+
" 0.8078, 0.2275, 0.0000, 0.0000],\n",
|
| 645 |
+
" [0.0000, 0.0000, 0.0000, 0.1529, 0.5059, 0.4000, 0.5765, 0.4667,\n",
|
| 646 |
+
" 0.0000, 0.4706, 0.3529, 0.4667, 0.3961, 0.4549, 0.4157, 0.4980,\n",
|
| 647 |
+
" 0.4000, 0.4471, 0.5725, 0.7059, 0.0784, 0.5725, 0.6235, 0.5059,\n",
|
| 648 |
+
" 0.8000, 0.2745, 0.0000, 0.0000],\n",
|
| 649 |
+
" [0.0000, 0.0000, 0.0000, 0.2275, 0.4941, 0.4353, 0.6353, 0.3961,\n",
|
| 650 |
+
" 0.0824, 0.5176, 0.3490, 0.4824, 0.4235, 0.4157, 0.4000, 0.4941,\n",
|
| 651 |
+
" 0.4353, 0.4549, 0.5529, 0.6980, 0.1961, 0.4392, 0.6627, 0.5412,\n",
|
| 652 |
+
" 0.6431, 0.3294, 0.0000, 0.0000],\n",
|
| 653 |
+
" [0.0000, 0.0000, 0.0000, 0.4235, 0.5255, 0.5255, 0.7255, 0.3294,\n",
|
| 654 |
+
" 0.2863, 0.4824, 0.3412, 0.4784, 0.4353, 0.4000, 0.4157, 0.5020,\n",
|
| 655 |
+
" 0.4471, 0.4275, 0.5255, 0.6824, 0.3804, 0.3843, 0.6275, 0.5765,\n",
|
| 656 |
+
" 0.6863, 0.5294, 0.0000, 0.0000],\n",
|
| 657 |
+
" [0.0000, 0.0000, 0.0000, 0.3804, 0.5569, 0.6627, 0.7765, 0.1451,\n",
|
| 658 |
+
" 0.3294, 0.4196, 0.3804, 0.4784, 0.4392, 0.4275, 0.4392, 0.4941,\n",
|
| 659 |
+
" 0.4000, 0.3765, 0.5137, 0.6745, 0.5020, 0.2000, 0.9961, 0.6588,\n",
|
| 660 |
+
" 0.6431, 0.4353, 0.0000, 0.0000],\n",
|
| 661 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0471, 0.1804, 0.0078,\n",
|
| 662 |
+
" 0.4667, 0.4000, 0.4275, 0.4824, 0.3765, 0.4549, 0.4784, 0.5176,\n",
|
| 663 |
+
" 0.4157, 0.4157, 0.5059, 0.5922, 0.7216, 0.1020, 0.0784, 0.0314,\n",
|
| 664 |
+
" 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
| 665 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0510,\n",
|
| 666 |
+
" 0.5373, 0.3961, 0.4471, 0.3922, 0.4157, 0.5255, 0.5294, 0.5059,\n",
|
| 667 |
+
" 0.4078, 0.4353, 0.4824, 0.5922, 0.7608, 0.2902, 0.0000, 0.0000,\n",
|
| 668 |
+
" 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
| 669 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0039, 0.0118, 0.0000, 0.2863,\n",
|
| 670 |
+
" 0.5176, 0.3961, 0.4078, 0.4000, 0.5490, 0.4235, 0.4235, 0.5137,\n",
|
| 671 |
+
" 0.4157, 0.4667, 0.4431, 0.5569, 0.6549, 0.5294, 0.0000, 0.0039,\n",
|
| 672 |
+
" 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
| 673 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.4392,\n",
|
| 674 |
+
" 0.4627, 0.4196, 0.4078, 0.5451, 0.4275, 0.3804, 0.4824, 0.5412,\n",
|
| 675 |
+
" 0.4196, 0.4980, 0.4706, 0.5333, 0.6314, 0.6235, 0.0000, 0.0000,\n",
|
| 676 |
+
" 0.0039, 0.0000, 0.0000, 0.0000],\n",
|
| 677 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0118, 0.0000, 0.5569,\n",
|
| 678 |
+
" 0.5804, 0.4392, 0.4118, 0.3961, 0.3255, 0.4902, 0.4824, 0.5608,\n",
|
| 679 |
+
" 0.4078, 0.4510, 0.3922, 0.4941, 0.6588, 0.6980, 0.0275, 0.0000,\n",
|
| 680 |
+
" 0.0078, 0.0000, 0.0000, 0.0000],\n",
|
| 681 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0078, 0.0000, 0.0353,\n",
|
| 682 |
+
" 0.4941, 0.7216, 0.7843, 0.6549, 0.6392, 0.6706, 0.5882, 0.6549,\n",
|
| 683 |
+
" 0.6118, 0.6824, 0.7725, 0.7137, 0.6353, 0.2392, 0.0000, 0.0000,\n",
|
| 684 |
+
" 0.0000, 0.0000, 0.0000, 0.0000],\n",
|
| 685 |
+
" [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,\n",
|
| 686 |
+
" 0.0000, 0.0000, 0.1176, 0.2824, 0.3725, 0.4275, 0.4353, 0.4353,\n",
|
| 687 |
+
" 0.4157, 0.3961, 0.2784, 0.0471, 0.0000, 0.0000, 0.0000, 0.0000,\n",
|
| 688 |
+
" 0.0000, 0.0000, 0.0000, 0.0000]]])"
|
| 689 |
+
]
|
| 690 |
+
},
|
| 691 |
+
"execution_count": 16,
|
| 692 |
+
"metadata": {},
|
| 693 |
+
"output_type": "execute_result"
|
| 694 |
+
}
|
| 695 |
+
],
|
| 696 |
+
"source": [
|
| 697 |
+
"test_data[4][0]"
|
| 698 |
+
]
|
| 699 |
+
},
|
| 700 |
+
{
|
| 701 |
+
"cell_type": "markdown",
|
| 702 |
+
"metadata": {},
|
| 703 |
+
"source": [
|
| 704 |
+
"Read more about `Saving & Loading your model <saveloadrun_tutorial.html>`_.\n",
|
| 705 |
+
"\n",
|
| 706 |
+
"\n"
|
| 707 |
+
]
|
| 708 |
+
}
|
| 709 |
+
],
|
| 710 |
+
"metadata": {
|
| 711 |
+
"kernelspec": {
|
| 712 |
+
"display_name": "Python 3",
|
| 713 |
+
"language": "python",
|
| 714 |
+
"name": "python3"
|
| 715 |
+
},
|
| 716 |
+
"language_info": {
|
| 717 |
+
"codemirror_mode": {
|
| 718 |
+
"name": "ipython",
|
| 719 |
+
"version": 3
|
| 720 |
+
},
|
| 721 |
+
"file_extension": ".py",
|
| 722 |
+
"mimetype": "text/x-python",
|
| 723 |
+
"name": "python",
|
| 724 |
+
"nbconvert_exporter": "python",
|
| 725 |
+
"pygments_lexer": "ipython3",
|
| 726 |
+
"version": "3.8.1"
|
| 727 |
+
}
|
| 728 |
+
},
|
| 729 |
+
"nbformat": 4,
|
| 730 |
+
"nbformat_minor": 0
|
| 731 |
+
}
|