File size: 1,447 Bytes
6eecb89 4cbf753 6eecb89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
license: apache-2.0
base_model:
- Ultralytics/YOLO11
pipeline_tag: object-detection
tags:
- pytorch
---
## YOLOv11x-Face-Detection
A lightweight face detection model based on YOLO architecture ([YOLOv11 xlarge](https://huggingface.co/Ultralytics/YOLO11)), trained for 100 epochs on the WIDERFACE dataset. It's way more accurate than my [YOLOv11n](https://huggingface.co/AdamCodd/YOLOv11n-face-detection) model, but slower.
It achieves the following results on the evaluation set:
```
==================== Results ====================
Easy Val AP: 0.9629194049702874
Medium Val AP: 0.9519172409689101
Hard Val AP: 0.8800338681974709
=================================================
```
YOLO results:

[Confusion matrix](https://huggingface.co/AdamCodd/YOLOv11x-face-detection/blob/main/confusion_matrix.png):
[[27338 3110]
[12337 0]]
### Usage
```python
from huggingface_hub import hf_hub_download
from ultralytics import YOLO
model_path = hf_hub_download(repo_id="AdamCodd/YOLOv11x-face-detection", filename="model.pt")
model = YOLO(model_path)
results = model.predict("/path/to/your/image", save=True) # saves the result in runs/detect/predict
```
### Limitations
- Performance may vary in extreme lighting conditions
- Best suited for frontal and slightly angled faces
- Optimal performance for faces occupying >20 pixels |