File size: 30,869 Bytes
b5f26bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:8760
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/modernbert-embed-base
widget:
- source_sentence: What is the interpretation described as inappropriate?
  sentences:
  - . Factors to be considered in determining the reasonableness of the lawyer’s expectation
    of confidentiality include the sensitivity of the information and the extent to
    which the privacy of the communication is protected by law or by a confidentiality
    agreement
  - . 20 of competition and rests on an inappropriate interpretation of SBA regulation
    13 C.F.R. § 125.9(b)(3)(i). See SHS MJAR at 16–23; VCH MJAR at 16–23
  - . 29-2, the CIA’s declaration explains in much more detail what is meant by “intelligence
    sources and methods” or “intelligence activities,” see Third Lutz Decl. ¶–30
- source_sentence: What is the source of the information regarding Senetas's knowledge
    about FDA approval?
  sentences:
  - . . . the exemption under which the deletion is made, shall be indicated at the
    place in the record where such deletion is made.” Id. Finally, the FOIA provides
    that “a court shall accord substantial weight to an affidavit of an agency concerning
    the agency’s determination as to technical feasibility under . . . subsection
    (b).” Id. § 552(a)(4)(B)
  - . 52 Senetas asserts that it learned about the plan to discontinue seeking FDA
    approval for DR’s products in September of 2018 after the decision had been made
    without any Board involvement. Galbally Dep. Tr. 66:19-23
  - . Conclusion Video footage, like social media evidence, is susceptible to alteration,
    and the increased availability of new technology, particularly the advent of image-generating
    artificial intelligence, may present unique challenges in authenticating videos
    and photographs
- source_sentence: What does Class Deviation CD-2020-14 allow for at the contract
    level?
  sentences:
  - social media company that 7At trial, the State had attempted to introduce evidence
    that was purportedly a printout from the MySpace page of the girlfriend of the
    defendant (whose nickname was allegedly “Boozy”) to demonstrate that the girlfriend
    had threatened a State’s witness
  - .” Supplement 2 to Class Deviation CD-2020-14 (Supplement 2), AR at 2904. The
    Senior Procurement Executive further elaborated that Class Deviation CD-2020-14
    “allowed for the use of ‘unpriced labor’ categories at the contract level for
    certain IDIQ multiple-award contracts.” Id
  - . Circuit has recognized that, separate from claims seeking relief for specific
    requests made under the FOIA, requesting parties may also assert a “claim that
    an agency policy or practice will impair the party’s lawful access to information
    in the future.” Payne Enters., Inc. v. United States, 837 F.2d 486, 491 (D.C.
    Cir. 1988) (emphasis in original); 31 accord Newport Aeronautical Sales v
- source_sentence: What should the agency describe about the non-exempt material in
    a document?
  sentences:
  - . A straightforward reading of the 2019 NDAA reveals that the Commission’s members
    are “temporary” federal employees. The Commission “shall be considered . . . a
    temporary organization under [5 U.S.C. § 3161].” Pub. L. No. 115-232, § 1051(a)(2).
    The Commission’s 15 members are “appointed for the life of the Commission” and
    are “Federal employees.” Id. § 1051(a)(4)(A), (6)–(7)
  - .15 Posteriormente, en armonía con el marco constitucional y doctrinario previamente
    reseñado, el 13 de julio de 2011, nuestra Legislatura aprobó, la Ley del Derecho
    sobre la Propia Imagen o Ley Núm. 139-201116. Dicho precepto legal estatuye una
    causa de acción en daños y perjuicios debido al uso no autorizado de la imagen
    con fines comerciales o publicitarios
  - . To this end, the Circuit has said that “[i]n addition to a statement of its
    reasons, an agency should also describe what proportion of the information in
    a document is non-exempt and how that material is dispersed throughout the document.”
    Id
- source_sentence: Which offeror is mentioned as getting in if there is a points discrepancy?
  sentences:
  - . at 9:14–19 (“[I]f an offeror does not have the same number of points, if it’s
    the 130th offeror and it doesn’t have the same number of points as the 90th offeror,
    then the solicitation says the 90th offeror gets in and the 130th doesn’t.”)
  - '. But the State had to establish that the communications were the handiwork of
    the defendant. It was in that context that temporal proximity came into play:
    The timing of the communications relative to other events connecting the defendant
    to the alleged crime was circumstantial evidence of the defendant’s authorship.
    Id. at 674-76'
  - . Since the plaintiff does not address this issue in its sur-reply brief in No.
    11-445, and because the plaintiff does not ask the Court to direct the DOJ to
    produce Document 3 to the plaintiff, the plaintiff does not appear to continue
    to challenge the DOJ’s decision to withhold Document 3. 140 recorded decision
    to implement the opinion.” Id. at 32
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.582135523613963
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7494866529774127
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.795687885010267
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8572895277207392
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.582135523613963
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.24982888432580422
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1591375770020534
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08572895277207392
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.582135523613963
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7494866529774127
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.795687885010267
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8572895277207392
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7211793259435271
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6775296600501939
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6827316333877884
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.5657084188911704
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7330595482546202
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7915811088295688
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8531827515400411
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5657084188911704
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.24435318275154005
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.15831622176591376
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08531827515400411
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5657084188911704
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7330595482546202
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7915811088295688
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8531827515400411
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7102670568981261
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6645362765229291
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6695389256684248
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.5410677618069816
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7063655030800822
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7659137577002053
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8305954825462012
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5410677618069816
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2354551676933607
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.15318275154004105
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08305954825462013
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5410677618069816
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7063655030800822
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7659137577002053
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8305954825462012
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6839216686374571
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6371842508392814
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6427516419970609
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.4887063655030801
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6581108829568788
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7176591375770021
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7802874743326489
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.4887063655030801
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2193702943189596
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14353182751540042
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07802874743326488
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.4887063655030801
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6581108829568788
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7176591375770021
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7802874743326489
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6318826024721981
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5846004041589256
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5917468903182894
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.3798767967145791
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5462012320328542
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6139630390143738
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.704312114989733
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.3798767967145791
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1820670773442847
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.12279260780287474
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0704312114989733
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3798767967145791
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5462012320328542
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6139630390143738
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.704312114989733
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5333651837657117
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4796983475114887
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4877644055271696
      name: Cosine Map@100
---

# Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision d556a88e332558790b210f7bdbe87da2fa94a8d8 -->
- **Maximum Sequence Length:** 1024 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("AdamLucek/modernbert-embed-quickb")
# Run inference
sentences = [
    'Which offeror is mentioned as getting in if there is a points discrepancy?',
    '. at 9:14–19 (“[I]f an offeror does not have the same number of points, if it’s the 130th offeror and it doesn’t have the same number of points as the 90th offeror, then the solicitation says the 90th offeror gets in and the 130th doesn’t.”)',
    '. Since the plaintiff does not address this issue in its sur-reply brief in No. 11-445, and because the plaintiff does not ask the Court to direct the DOJ to produce Document 3 to the plaintiff, the plaintiff does not appear to continue to challenge the DOJ’s decision to withhold Document 3. 140 recorded decision to implement the opinion.” Id. at 32',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | dim_768    | dim_512    | dim_256    | dim_128    | dim_64     |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1   | 0.5821     | 0.5657     | 0.5411     | 0.4887     | 0.3799     |
| cosine_accuracy@3   | 0.7495     | 0.7331     | 0.7064     | 0.6581     | 0.5462     |
| cosine_accuracy@5   | 0.7957     | 0.7916     | 0.7659     | 0.7177     | 0.614      |
| cosine_accuracy@10  | 0.8573     | 0.8532     | 0.8306     | 0.7803     | 0.7043     |
| cosine_precision@1  | 0.5821     | 0.5657     | 0.5411     | 0.4887     | 0.3799     |
| cosine_precision@3  | 0.2498     | 0.2444     | 0.2355     | 0.2194     | 0.1821     |
| cosine_precision@5  | 0.1591     | 0.1583     | 0.1532     | 0.1435     | 0.1228     |
| cosine_precision@10 | 0.0857     | 0.0853     | 0.0831     | 0.078      | 0.0704     |
| cosine_recall@1     | 0.5821     | 0.5657     | 0.5411     | 0.4887     | 0.3799     |
| cosine_recall@3     | 0.7495     | 0.7331     | 0.7064     | 0.6581     | 0.5462     |
| cosine_recall@5     | 0.7957     | 0.7916     | 0.7659     | 0.7177     | 0.614      |
| cosine_recall@10    | 0.8573     | 0.8532     | 0.8306     | 0.7803     | 0.7043     |
| **cosine_ndcg@10**  | **0.7212** | **0.7103** | **0.6839** | **0.6319** | **0.5334** |
| cosine_mrr@10       | 0.6775     | 0.6645     | 0.6372     | 0.5846     | 0.4797     |
| cosine_map@100      | 0.6827     | 0.6695     | 0.6428     | 0.5917     | 0.4878     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 8,760 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 7 tokens</li><li>mean: 15.54 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 76.24 tokens</li><li>max: 169 tokens</li></ul> |
* Samples:
  | anchor                                                                                      | positive                                                                                                                                                                                                                                                                                                                                                                                                               |
  |:--------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What is being compared in the Circuit's statement?</code>                             | <code>.2d at 1389–90. The Circuit rejected this analogy, stating that, in contrast to the CIA Act, the NSA Act “protects not only organizational matters . . . but also ‘any information with respect to the activities’ of the NSA.” Id. at 1390</code>                                                                                                                                                               |
  | <code>What type of internal documents used by the CIA in FOIA requests is mentioned?</code> | <code>. 108 Accordingly, the Court holds that certain specific categories of information withheld by the CIA in this case pursuant to § 403g clearly fall outside that provision’s scope, including (1) internal templates utilized by the CIA in tasking FOIA requests, (2) internal rules, policies and procedures governing FOIA processing, and (7) information about the CIA’s “core functions,” including</code> |
  | <code>How many documents did the CIA withhold under Exemption 2?</code>                     | <code>. The CIA states in its declaration that all thirteen documents withheld under 38 The plaintiff previously indicated that it intended to challenge Exemption 2 withholding decisions made by the ODNI as well. See Hackett Decl. Ex. E at 1, ECF No. 29-8. The plaintiff, however, does not pursue that challenge in its opposition to the defendants’ motions for summary judgment in No. 11-445</code>         |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.5839     | 10     | 67.1727       | -                      | -                      | -                      | -                      | -                     |
| 1.0        | 18     | -             | 0.6999                 | 0.6820                 | 0.6577                 | 0.5988                 | 0.4855                |
| 1.1168     | 20     | 32.4667       | -                      | -                      | -                      | -                      | -                     |
| 1.7007     | 30     | 27.9435       | -                      | -                      | -                      | -                      | -                     |
| 2.0        | 36     | -             | 0.7167                 | 0.7002                 | 0.6764                 | 0.6233                 | 0.5187                |
| 2.2336     | 40     | 22.2924       | -                      | -                      | -                      | -                      | -                     |
| 2.8175     | 50     | 20.5125       | -                      | -                      | -                      | -                      | -                     |
| 3.0        | 54     | -             | 0.7190                 | 0.7080                 | 0.6824                 | 0.6318                 | 0.5339                |
| 3.3504     | 60     | 18.3621       | -                      | -                      | -                      | -                      | -                     |
| **3.8175** | **68** | **-**         | **0.7212**             | **0.7103**             | **0.6839**             | **0.6319**             | **0.5334**            |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->