File size: 30,869 Bytes
b5f26bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:8760
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/modernbert-embed-base
widget:
- source_sentence: What is the interpretation described as inappropriate?
sentences:
- . Factors to be considered in determining the reasonableness of the lawyer’s expectation
of confidentiality include the sensitivity of the information and the extent to
which the privacy of the communication is protected by law or by a confidentiality
agreement
- . 20 of competition and rests on an inappropriate interpretation of SBA regulation
13 C.F.R. § 125.9(b)(3)(i). See SHS MJAR at 16–23; VCH MJAR at 16–23
- . 29-2, the CIA’s declaration explains in much more detail what is meant by “intelligence
sources and methods” or “intelligence activities,” see Third Lutz Decl. ¶–30
- source_sentence: What is the source of the information regarding Senetas's knowledge
about FDA approval?
sentences:
- . . . the exemption under which the deletion is made, shall be indicated at the
place in the record where such deletion is made.” Id. Finally, the FOIA provides
that “a court shall accord substantial weight to an affidavit of an agency concerning
the agency’s determination as to technical feasibility under . . . subsection
(b).” Id. § 552(a)(4)(B)
- . 52 Senetas asserts that it learned about the plan to discontinue seeking FDA
approval for DR’s products in September of 2018 after the decision had been made
without any Board involvement. Galbally Dep. Tr. 66:19-23
- . Conclusion Video footage, like social media evidence, is susceptible to alteration,
and the increased availability of new technology, particularly the advent of image-generating
artificial intelligence, may present unique challenges in authenticating videos
and photographs
- source_sentence: What does Class Deviation CD-2020-14 allow for at the contract
level?
sentences:
- social media company that 7At trial, the State had attempted to introduce evidence
that was purportedly a printout from the MySpace page of the girlfriend of the
defendant (whose nickname was allegedly “Boozy”) to demonstrate that the girlfriend
had threatened a State’s witness
- .” Supplement 2 to Class Deviation CD-2020-14 (Supplement 2), AR at 2904. The
Senior Procurement Executive further elaborated that Class Deviation CD-2020-14
“allowed for the use of ‘unpriced labor’ categories at the contract level for
certain IDIQ multiple-award contracts.” Id
- . Circuit has recognized that, separate from claims seeking relief for specific
requests made under the FOIA, requesting parties may also assert a “claim that
an agency policy or practice will impair the party’s lawful access to information
in the future.” Payne Enters., Inc. v. United States, 837 F.2d 486, 491 (D.C.
Cir. 1988) (emphasis in original); 31 accord Newport Aeronautical Sales v
- source_sentence: What should the agency describe about the non-exempt material in
a document?
sentences:
- . A straightforward reading of the 2019 NDAA reveals that the Commission’s members
are “temporary” federal employees. The Commission “shall be considered . . . a
temporary organization under [5 U.S.C. § 3161].” Pub. L. No. 115-232, § 1051(a)(2).
The Commission’s 15 members are “appointed for the life of the Commission” and
are “Federal employees.” Id. § 1051(a)(4)(A), (6)–(7)
- .15 Posteriormente, en armonía con el marco constitucional y doctrinario previamente
reseñado, el 13 de julio de 2011, nuestra Legislatura aprobó, la Ley del Derecho
sobre la Propia Imagen o Ley Núm. 139-201116. Dicho precepto legal estatuye una
causa de acción en daños y perjuicios debido al uso no autorizado de la imagen
con fines comerciales o publicitarios
- . To this end, the Circuit has said that “[i]n addition to a statement of its
reasons, an agency should also describe what proportion of the information in
a document is non-exempt and how that material is dispersed throughout the document.”
Id
- source_sentence: Which offeror is mentioned as getting in if there is a points discrepancy?
sentences:
- . at 9:14–19 (“[I]f an offeror does not have the same number of points, if it’s
the 130th offeror and it doesn’t have the same number of points as the 90th offeror,
then the solicitation says the 90th offeror gets in and the 130th doesn’t.”)
- '. But the State had to establish that the communications were the handiwork of
the defendant. It was in that context that temporal proximity came into play:
The timing of the communications relative to other events connecting the defendant
to the alleged crime was circumstantial evidence of the defendant’s authorship.
Id. at 674-76'
- . Since the plaintiff does not address this issue in its sur-reply brief in No.
11-445, and because the plaintiff does not ask the Court to direct the DOJ to
produce Document 3 to the plaintiff, the plaintiff does not appear to continue
to challenge the DOJ’s decision to withhold Document 3. 140 recorded decision
to implement the opinion.” Id. at 32
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.582135523613963
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7494866529774127
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.795687885010267
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8572895277207392
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.582135523613963
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.24982888432580422
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1591375770020534
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08572895277207392
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.582135523613963
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7494866529774127
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.795687885010267
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8572895277207392
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7211793259435271
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6775296600501939
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6827316333877884
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.5657084188911704
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7330595482546202
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7915811088295688
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8531827515400411
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5657084188911704
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.24435318275154005
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15831622176591376
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08531827515400411
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5657084188911704
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7330595482546202
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7915811088295688
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8531827515400411
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7102670568981261
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6645362765229291
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6695389256684248
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.5410677618069816
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7063655030800822
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7659137577002053
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8305954825462012
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5410677618069816
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2354551676933607
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15318275154004105
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08305954825462013
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5410677618069816
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7063655030800822
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7659137577002053
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8305954825462012
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6839216686374571
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6371842508392814
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6427516419970609
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.4887063655030801
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6581108829568788
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7176591375770021
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7802874743326489
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.4887063655030801
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2193702943189596
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14353182751540042
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07802874743326488
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.4887063655030801
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6581108829568788
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7176591375770021
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7802874743326489
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6318826024721981
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5846004041589256
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5917468903182894
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.3798767967145791
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5462012320328542
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6139630390143738
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.704312114989733
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3798767967145791
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1820670773442847
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12279260780287474
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0704312114989733
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3798767967145791
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5462012320328542
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6139630390143738
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.704312114989733
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5333651837657117
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4796983475114887
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4877644055271696
name: Cosine Map@100
---
# Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision d556a88e332558790b210f7bdbe87da2fa94a8d8 -->
- **Maximum Sequence Length:** 1024 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("AdamLucek/modernbert-embed-quickb")
# Run inference
sentences = [
'Which offeror is mentioned as getting in if there is a points discrepancy?',
'. at 9:14–19 (“[I]f an offeror does not have the same number of points, if it’s the 130th offeror and it doesn’t have the same number of points as the 90th offeror, then the solicitation says the 90th offeror gets in and the 130th doesn’t.”)',
'. Since the plaintiff does not address this issue in its sur-reply brief in No. 11-445, and because the plaintiff does not ask the Court to direct the DOJ to produce Document 3 to the plaintiff, the plaintiff does not appear to continue to challenge the DOJ’s decision to withhold Document 3. 140 recorded decision to implement the opinion.” Id. at 32',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1 | 0.5821 | 0.5657 | 0.5411 | 0.4887 | 0.3799 |
| cosine_accuracy@3 | 0.7495 | 0.7331 | 0.7064 | 0.6581 | 0.5462 |
| cosine_accuracy@5 | 0.7957 | 0.7916 | 0.7659 | 0.7177 | 0.614 |
| cosine_accuracy@10 | 0.8573 | 0.8532 | 0.8306 | 0.7803 | 0.7043 |
| cosine_precision@1 | 0.5821 | 0.5657 | 0.5411 | 0.4887 | 0.3799 |
| cosine_precision@3 | 0.2498 | 0.2444 | 0.2355 | 0.2194 | 0.1821 |
| cosine_precision@5 | 0.1591 | 0.1583 | 0.1532 | 0.1435 | 0.1228 |
| cosine_precision@10 | 0.0857 | 0.0853 | 0.0831 | 0.078 | 0.0704 |
| cosine_recall@1 | 0.5821 | 0.5657 | 0.5411 | 0.4887 | 0.3799 |
| cosine_recall@3 | 0.7495 | 0.7331 | 0.7064 | 0.6581 | 0.5462 |
| cosine_recall@5 | 0.7957 | 0.7916 | 0.7659 | 0.7177 | 0.614 |
| cosine_recall@10 | 0.8573 | 0.8532 | 0.8306 | 0.7803 | 0.7043 |
| **cosine_ndcg@10** | **0.7212** | **0.7103** | **0.6839** | **0.6319** | **0.5334** |
| cosine_mrr@10 | 0.6775 | 0.6645 | 0.6372 | 0.5846 | 0.4797 |
| cosine_map@100 | 0.6827 | 0.6695 | 0.6428 | 0.5917 | 0.4878 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 8,760 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 15.54 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 76.24 tokens</li><li>max: 169 tokens</li></ul> |
* Samples:
| anchor | positive |
|:--------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What is being compared in the Circuit's statement?</code> | <code>.2d at 1389–90. The Circuit rejected this analogy, stating that, in contrast to the CIA Act, the NSA Act “protects not only organizational matters . . . but also ‘any information with respect to the activities’ of the NSA.” Id. at 1390</code> |
| <code>What type of internal documents used by the CIA in FOIA requests is mentioned?</code> | <code>. 108 Accordingly, the Court holds that certain specific categories of information withheld by the CIA in this case pursuant to § 403g clearly fall outside that provision’s scope, including (1) internal templates utilized by the CIA in tasking FOIA requests, (2) internal rules, policies and procedures governing FOIA processing, and (7) information about the CIA’s “core functions,” including</code> |
| <code>How many documents did the CIA withhold under Exemption 2?</code> | <code>. The CIA states in its declaration that all thirteen documents withheld under 38 The plaintiff previously indicated that it intended to challenge Exemption 2 withholding decisions made by the ODNI as well. See Hackett Decl. Ex. E at 1, ECF No. 29-8. The plaintiff, however, does not pursue that challenge in its opposition to the defendants’ motions for summary judgment in No. 11-445</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.5839 | 10 | 67.1727 | - | - | - | - | - |
| 1.0 | 18 | - | 0.6999 | 0.6820 | 0.6577 | 0.5988 | 0.4855 |
| 1.1168 | 20 | 32.4667 | - | - | - | - | - |
| 1.7007 | 30 | 27.9435 | - | - | - | - | - |
| 2.0 | 36 | - | 0.7167 | 0.7002 | 0.6764 | 0.6233 | 0.5187 |
| 2.2336 | 40 | 22.2924 | - | - | - | - | - |
| 2.8175 | 50 | 20.5125 | - | - | - | - | - |
| 3.0 | 54 | - | 0.7190 | 0.7080 | 0.6824 | 0.6318 | 0.5339 |
| 3.3504 | 60 | 18.3621 | - | - | - | - | - |
| **3.8175** | **68** | **-** | **0.7212** | **0.7103** | **0.6839** | **0.6319** | **0.5334** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |