File size: 2,476 Bytes
83d07ab
 
 
 
 
19c29ec
83d07ab
 
 
 
 
 
 
 
 
 
 
 
 
19c29ec
83d07ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- automatic-speech-recognition
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-MYST
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-MYST

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MYST dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Wer: 1.0
- Cer: 1.0005

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 8
- total_eval_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step   | Validation Loss | Wer | Cer    |
|:-------------:|:-------:|:------:|:---------------:|:---:|:------:|
| 3.7175        | 1.1963  | 10000  | inf             | 1.0 | 1.0005 |
| 0.0           | 2.3926  | 20000  | nan             | 1.0 | 1.0005 |
| 0.0           | 3.5889  | 30000  | nan             | 1.0 | 1.0005 |
| 0.0           | 4.7853  | 40000  | nan             | 1.0 | 1.0005 |
| 0.0           | 5.9816  | 50000  | nan             | 1.0 | 1.0005 |
| 0.0           | 7.1779  | 60000  | nan             | 1.0 | 1.0005 |
| 0.0           | 8.3742  | 70000  | nan             | 1.0 | 1.0005 |
| 0.0           | 9.5705  | 80000  | nan             | 1.0 | 1.0005 |
| 0.0           | 10.7668 | 90000  | nan             | 1.0 | 1.0005 |
| 0.0           | 11.9632 | 100000 | nan             | 1.0 | 1.0005 |
| 0.0           | 13.1595 | 110000 | nan             | 1.0 | 1.0005 |
| 0.0           | 14.3558 | 120000 | nan             | 1.0 | 1.0005 |


### Framework versions

- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0