Update README.md
Browse files
README.md
CHANGED
@@ -1,11 +1,17 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for Model
|
7 |
|
8 |
-
|
9 |
|
10 |
|
11 |
|
@@ -13,25 +19,16 @@ tags: []
|
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
@@ -39,161 +36,106 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
39 |
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
43 |
|
44 |
-
[More Information Needed]
|
45 |
|
46 |
### Downstream Use [optional]
|
47 |
|
48 |
-
|
49 |
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
|
54 |
-
|
55 |
|
56 |
-
[More Information Needed]
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
|
64 |
### Recommendations
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
Use the code below to
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
|
76 |
-
|
|
|
77 |
|
78 |
-
|
|
|
79 |
|
80 |
-
|
|
|
|
|
|
|
81 |
|
82 |
-
|
|
|
83 |
|
84 |
-
|
85 |
|
86 |
-
|
87 |
|
88 |
-
|
89 |
|
90 |
-
|
91 |
|
|
|
|
|
|
|
|
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
-
- **
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
### Testing Data, Factors & Metrics
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
|
141 |
## Environmental Impact
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
|
155 |
### Model Architecture and Objective
|
156 |
|
157 |
-
|
158 |
|
159 |
### Compute Infrastructure
|
160 |
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
#### Hardware
|
164 |
|
165 |
-
|
|
|
166 |
|
167 |
#### Software
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
|
193 |
-
## Model Card Authors
|
194 |
|
195 |
-
|
196 |
|
197 |
-
##
|
198 |
|
199 |
-
[
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- text-generation
|
5 |
+
- ad-generation
|
6 |
+
- marketing
|
7 |
+
- transformers
|
8 |
+
- pytorch
|
9 |
+
- beam-search
|
10 |
---
|
11 |
|
12 |
+
# # Model Card for Falcon-RW-1B Fine-Tuned Model
|
13 |
|
14 |
+
This model is a fine-tuned version of `tiiuae/falcon-rw-1b` trained on an advertising-related dataset to generate ad text based on prompts.
|
15 |
|
16 |
|
17 |
|
|
|
19 |
|
20 |
### Model Description
|
21 |
|
22 |
+
This model is a fine-tuned version of the Falcon-RW-1B model, specifically adapted for generating advertising content. The fine-tuning process utilized a dataset containing ad-related text, formatted as structured prompt-response pairs.
|
23 |
|
24 |
+
- **Developed by:** Adnane Touiyate
|
25 |
+
- **Funded by [optional]:** [Adnane10](https://huggingface.co/Adnane10)
|
26 |
+
- **Shared by [optional]:** [Adnane10](https://huggingface.co/Adnane10)
|
27 |
+
- **Model type:** Falcon-RW-1B (Causal Language Model)
|
28 |
+
- **Language(s) (NLP):** English
|
29 |
+
- **License:** MIT
|
30 |
+
- **Finetuned from model [optional]:** `tiiuae/falcon-rw-1b`
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
## Uses
|
34 |
|
|
|
36 |
|
37 |
### Direct Use
|
38 |
|
39 |
+
This model can be used for generating advertising content based on structured prompts. It is useful for marketers and advertisers who need AI-generated ad copies.
|
40 |
|
|
|
41 |
|
42 |
### Downstream Use [optional]
|
43 |
|
44 |
+
The model can be further fine-tuned for specific ad categories or integrated into larger marketing automation workflows.
|
45 |
|
|
|
46 |
|
47 |
### Out-of-Scope Use
|
48 |
|
49 |
+
This model is not intended for generating non-advertising-related content, and its performance may be suboptimal in general text generation tasks beyond its training scope.
|
50 |
|
|
|
51 |
|
52 |
## Bias, Risks, and Limitations
|
53 |
|
54 |
+
Since the model has been fine-tuned on advertising content, it may inherit biases present in the dataset. Users should be cautious when generating ads to ensure they meet ethical and regulatory standards.
|
|
|
|
|
55 |
|
56 |
### Recommendations
|
57 |
|
58 |
+
Users should validate the generated content for appropriateness, compliance, and factual accuracy before using it in real-world applications.
|
|
|
|
|
59 |
|
60 |
## How to Get Started with the Model
|
61 |
|
62 |
+
Use the code below to load and use the model:
|
|
|
|
|
63 |
|
64 |
+
```python
|
65 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
66 |
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-rw-1b")
|
68 |
+
model = AutoModelForCausalLM.from_pretrained("path_to_finetuned_model")
|
69 |
|
70 |
+
def generate_ad(prompt):
|
71 |
+
inputs = tokenizer(prompt, return_tensors="pt").to('cuda')
|
72 |
+
outputs = model.generate(**inputs, max_length=100)
|
73 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
74 |
|
75 |
+
print(generate_ad("Introducing our latest product: "))
|
76 |
+
```
|
77 |
|
78 |
+
## Training Details
|
79 |
|
80 |
+
### Training Data
|
81 |
|
82 |
+
The model was trained on `fixed_ads_list.json`, a dataset containing structured ad-related prompts and responses.
|
83 |
|
84 |
+
### Training Procedure
|
85 |
|
86 |
+
- **Preprocessing:** Tokenized text in the format `### Prompt: [User Input] ### Response: [Ad Text]`
|
87 |
+
- **Quantization:** Used 4-bit quantization (NF4) with `bitsandbytes` for efficiency.
|
88 |
+
- **Fine-tuning method:** LoRA (Low-Rank Adaptation) for efficient adaptation.
|
89 |
+
- **Hardware:** GPU-accelerated training.
|
90 |
|
91 |
#### Training Hyperparameters
|
92 |
|
93 |
+
- **Learning Rate:** 1e-4
|
94 |
+
- **Batch Size:** 2 (per device)
|
95 |
+
- **Gradient Accumulation:** 8 steps
|
96 |
+
- **Epochs:** 6
|
97 |
+
- **Precision:** BF16
|
98 |
+
- **Evaluation Strategy:** Epoch-based
|
99 |
+
- **Early Stopping:** Enabled after 2 epochs without improvement
|
100 |
|
101 |
## Evaluation
|
102 |
|
|
|
|
|
103 |
### Testing Data, Factors & Metrics
|
104 |
|
105 |
+
- **Metrics:** BLEU and ROUGE scores
|
106 |
+
- **Results:** Sample evaluation showed:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
## Environmental Impact
|
110 |
|
111 |
+
- **Hardware Type:** NVIDIA P100 GPU
|
112 |
+
- **Hours used:** ~54 minutes
|
113 |
+
- **Cloud Provider:** Kaggle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
### Model Architecture and Objective
|
116 |
|
117 |
+
The Falcon-RW-1B model is a causal language model optimized for text generation.
|
118 |
|
119 |
### Compute Infrastructure
|
120 |
|
|
|
|
|
121 |
#### Hardware
|
122 |
|
123 |
+
- GPUs (NVIDIA P100)
|
124 |
+
- Used `bitsandbytes` for memory-efficient training
|
125 |
|
126 |
#### Software
|
127 |
|
128 |
+
- `transformers`
|
129 |
+
- `datasets`
|
130 |
+
- `peft`
|
131 |
+
- `torch`
|
132 |
+
- `accelerate`
|
133 |
+
- `bitsandbytes`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
+
## Model Card Authors
|
136 |
|
137 |
+
**Adnane Touiyate** ([@Adnane10](https://huggingface.co/Adnane10))
|
138 |
|
139 |
+
## Contact
|
140 |
|
141 |
+
For questions or collaborations, reach out via [LinkedIn](https://www.linkedin.com/in/adnanetouiyate/) or email: [[email protected]](mailto:[email protected])
|