Adnane10 commited on
Commit
e6a9a75
·
verified ·
1 Parent(s): 03b941a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -124
README.md CHANGED
@@ -1,11 +1,17 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
11
 
@@ -13,25 +19,16 @@ tags: []
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
@@ -39,161 +36,106 @@ This is the model card of a 🤗 transformers model that has been pushed on the
39
 
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
  ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
- ## Training Details
 
77
 
78
- ### Training Data
 
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
 
 
81
 
82
- [More Information Needed]
 
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
 
 
 
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
  ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
  #### Hardware
164
 
165
- [More Information Needed]
 
166
 
167
  #### Software
168
 
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - text-generation
5
+ - ad-generation
6
+ - marketing
7
+ - transformers
8
+ - pytorch
9
+ - beam-search
10
  ---
11
 
12
+ # # Model Card for Falcon-RW-1B Fine-Tuned Model
13
 
14
+ This model is a fine-tuned version of `tiiuae/falcon-rw-1b` trained on an advertising-related dataset to generate ad text based on prompts.
15
 
16
 
17
 
 
19
 
20
  ### Model Description
21
 
22
+ This model is a fine-tuned version of the Falcon-RW-1B model, specifically adapted for generating advertising content. The fine-tuning process utilized a dataset containing ad-related text, formatted as structured prompt-response pairs.
23
 
24
+ - **Developed by:** Adnane Touiyate
25
+ - **Funded by [optional]:** [Adnane10](https://huggingface.co/Adnane10)
26
+ - **Shared by [optional]:** [Adnane10](https://huggingface.co/Adnane10)
27
+ - **Model type:** Falcon-RW-1B (Causal Language Model)
28
+ - **Language(s) (NLP):** English
29
+ - **License:** MIT
30
+ - **Finetuned from model [optional]:** `tiiuae/falcon-rw-1b`
31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
  ## Uses
34
 
 
36
 
37
  ### Direct Use
38
 
39
+ This model can be used for generating advertising content based on structured prompts. It is useful for marketers and advertisers who need AI-generated ad copies.
40
 
 
41
 
42
  ### Downstream Use [optional]
43
 
44
+ The model can be further fine-tuned for specific ad categories or integrated into larger marketing automation workflows.
45
 
 
46
 
47
  ### Out-of-Scope Use
48
 
49
+ This model is not intended for generating non-advertising-related content, and its performance may be suboptimal in general text generation tasks beyond its training scope.
50
 
 
51
 
52
  ## Bias, Risks, and Limitations
53
 
54
+ Since the model has been fine-tuned on advertising content, it may inherit biases present in the dataset. Users should be cautious when generating ads to ensure they meet ethical and regulatory standards.
 
 
55
 
56
  ### Recommendations
57
 
58
+ Users should validate the generated content for appropriateness, compliance, and factual accuracy before using it in real-world applications.
 
 
59
 
60
  ## How to Get Started with the Model
61
 
62
+ Use the code below to load and use the model:
 
 
63
 
64
+ ```python
65
+ from transformers import AutoTokenizer, AutoModelForCausalLM
66
 
67
+ tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-rw-1b")
68
+ model = AutoModelForCausalLM.from_pretrained("path_to_finetuned_model")
69
 
70
+ def generate_ad(prompt):
71
+ inputs = tokenizer(prompt, return_tensors="pt").to('cuda')
72
+ outputs = model.generate(**inputs, max_length=100)
73
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
74
 
75
+ print(generate_ad("Introducing our latest product: "))
76
+ ```
77
 
78
+ ## Training Details
79
 
80
+ ### Training Data
81
 
82
+ The model was trained on `fixed_ads_list.json`, a dataset containing structured ad-related prompts and responses.
83
 
84
+ ### Training Procedure
85
 
86
+ - **Preprocessing:** Tokenized text in the format `### Prompt: [User Input] ### Response: [Ad Text]`
87
+ - **Quantization:** Used 4-bit quantization (NF4) with `bitsandbytes` for efficiency.
88
+ - **Fine-tuning method:** LoRA (Low-Rank Adaptation) for efficient adaptation.
89
+ - **Hardware:** GPU-accelerated training.
90
 
91
  #### Training Hyperparameters
92
 
93
+ - **Learning Rate:** 1e-4
94
+ - **Batch Size:** 2 (per device)
95
+ - **Gradient Accumulation:** 8 steps
96
+ - **Epochs:** 6
97
+ - **Precision:** BF16
98
+ - **Evaluation Strategy:** Epoch-based
99
+ - **Early Stopping:** Enabled after 2 epochs without improvement
100
 
101
  ## Evaluation
102
 
 
 
103
  ### Testing Data, Factors & Metrics
104
 
105
+ - **Metrics:** BLEU and ROUGE scores
106
+ - **Results:** Sample evaluation showed:
 
 
 
 
 
 
 
 
 
 
 
 
 
107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
 
109
  ## Environmental Impact
110
 
111
+ - **Hardware Type:** NVIDIA P100 GPU
112
+ - **Hours used:** ~54 minutes
113
+ - **Cloud Provider:** Kaggle
 
 
 
 
 
 
 
 
114
 
115
  ### Model Architecture and Objective
116
 
117
+ The Falcon-RW-1B model is a causal language model optimized for text generation.
118
 
119
  ### Compute Infrastructure
120
 
 
 
121
  #### Hardware
122
 
123
+ - GPUs (NVIDIA P100)
124
+ - Used `bitsandbytes` for memory-efficient training
125
 
126
  #### Software
127
 
128
+ - `transformers`
129
+ - `datasets`
130
+ - `peft`
131
+ - `torch`
132
+ - `accelerate`
133
+ - `bitsandbytes`
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
 
135
+ ## Model Card Authors
136
 
137
+ **Adnane Touiyate** ([@Adnane10](https://huggingface.co/Adnane10))
138
 
139
+ ## Contact
140
 
141
+ For questions or collaborations, reach out via [LinkedIn](https://www.linkedin.com/in/adnanetouiyate/) or email: [[email protected]](mailto:[email protected])