File size: 14,546 Bytes
b2a8800 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
# NEBULA v0.4 - Technical Implementation Details
**Equipo NEBULA: Francisco Angulo de Lafuente y Ángel Vega**
---
## 🔬 Photonic Neural Network Implementation
### Authentic Optical Physics Simulation
The photonic component uses real optical physics equations implemented in CUDA-accelerated PyTorch:
#### 1. Snell's Law Refraction
```python
def apply_snells_law(self, incident_angle, n1, n2):
"""Apply Snell's law: n1*sin(θ1) = n2*sin(θ2)"""
sin_theta1 = torch.sin(incident_angle)
sin_theta2 = (n1 / n2) * sin_theta1
# Handle total internal reflection
sin_theta2 = torch.clamp(sin_theta2, -1.0, 1.0)
refracted_angle = torch.asin(sin_theta2)
return refracted_angle
```
#### 2. Beer-Lambert Absorption
```python
def beer_lambert_absorption(self, intensity, absorption_coeff, path_length):
"""Beer-Lambert law: I = I₀ * exp(-α * L)"""
return intensity * torch.exp(-absorption_coeff * path_length)
```
#### 3. Fresnel Reflection
```python
def fresnel_reflection(self, n1, n2):
"""Fresnel equations for reflection coefficient"""
R = ((n1 - n2) / (n1 + n2))**2
T = 1.0 - R # Transmission coefficient
return R, T
```
#### 4. Optical Interference
```python
def optical_interference(self, wave1, wave2, phase_difference):
"""Two-wave interference pattern"""
amplitude = torch.sqrt(wave1**2 + wave2**2 + 2*wave1*wave2*torch.cos(phase_difference))
return amplitude
```
### Wavelength Spectrum Processing
The model processes the full electromagnetic spectrum from UV to IR:
```python
WAVELENGTH_RANGES = {
'UV': (200e-9, 400e-9), # Ultraviolet
'Visible': (400e-9, 700e-9), # Visible light
'NIR': (700e-9, 1400e-9), # Near-infrared
'IR': (1400e-9, 3000e-9) # Infrared
}
def process_spectrum(self, input_tensor):
"""Process input across electromagnetic spectrum"""
spectral_outputs = []
for band, (λ_min, λ_max) in self.WAVELENGTH_RANGES.items():
# Calculate refractive index for wavelength
n = self.sellmeier_equation(λ_min, λ_max)
# Process with wavelength-dependent optics
output = self.optical_ray_interaction(input_tensor, n, λ_min)
spectral_outputs.append(output)
return torch.stack(spectral_outputs, dim=-1)
```
---
## ⚛️ Quantum Memory System
### Authentic Quantum Gate Implementation
All quantum gates use proper unitary matrices following quantum mechanics:
#### Pauli Gates
```python
def pauli_x_gate(self):
"""Pauli-X (bit flip) gate"""
return torch.tensor([[0, 1], [1, 0]], dtype=torch.complex64)
def pauli_y_gate(self):
"""Pauli-Y gate"""
return torch.tensor([[0, -1j], [1j, 0]], dtype=torch.complex64)
def pauli_z_gate(self):
"""Pauli-Z (phase flip) gate"""
return torch.tensor([[1, 0], [0, -1]], dtype=torch.complex64)
```
#### Rotation Gates
```python
def rx_gate(self, theta):
"""X-rotation gate: RX(θ) = exp(-iθX/2)"""
cos_half = torch.cos(theta / 2)
sin_half = torch.sin(theta / 2)
return torch.tensor([
[cos_half, -1j * sin_half],
[-1j * sin_half, cos_half]
], dtype=torch.complex64)
def ry_gate(self, theta):
"""Y-rotation gate: RY(θ) = exp(-iθY/2)"""
cos_half = torch.cos(theta / 2)
sin_half = torch.sin(theta / 2)
return torch.tensor([
[cos_half, -sin_half],
[sin_half, cos_half]
], dtype=torch.complex64)
```
### 4-Qubit Quantum Circuits
Each quantum memory neuron operates a 4-qubit system:
```python
def create_4qubit_circuit(self, input_data):
"""Create and execute 4-qubit quantum circuit"""
# Initialize 4-qubit state |0000⟩
state = torch.zeros(16, dtype=torch.complex64)
state[0] = 1.0 # |0000⟩ state
# Apply parametrized quantum gates
for i in range(4):
# Single-qubit rotations
theta_x = input_data[i * 3]
theta_y = input_data[i * 3 + 1]
theta_z = input_data[i * 3 + 2]
state = self.apply_single_qubit_gate(state, self.rx_gate(theta_x), i)
state = self.apply_single_qubit_gate(state, self.ry_gate(theta_y), i)
state = self.apply_single_qubit_gate(state, self.rz_gate(theta_z), i)
# Apply entangling gates (CNOT)
for i in range(3):
state = self.apply_cnot_gate(state, control=i, target=i+1)
return state
```
### Quantum State Measurement
```python
def measure_quantum_state(self, quantum_state):
"""Measure quantum state and return classical information"""
# Calculate measurement probabilities
probabilities = torch.abs(quantum_state)**2
# Expectation values for Pauli operators
expectations = []
for pauli_op in [self.pauli_x, self.pauli_y, self.pauli_z]:
expectation = torch.real(torch.conj(quantum_state) @ pauli_op @ quantum_state)
expectations.append(expectation)
return torch.stack(expectations)
```
---
## 🌈 Holographic Memory System
### Complex Number Holographic Storage
The holographic memory uses complex numbers to store interference patterns:
```python
def holographic_encode(self, object_beam, reference_beam):
"""Create holographic interference pattern"""
# Convert to complex representation
object_complex = torch.complex(object_beam, torch.zeros_like(object_beam))
reference_complex = torch.complex(reference_beam, torch.zeros_like(reference_beam))
# Create interference pattern: |O + R|²
total_beam = object_complex + reference_complex
interference_pattern = torch.abs(total_beam)**2
# Store phase information
phase_pattern = torch.angle(total_beam)
# Combine amplitude and phase
hologram = torch.complex(interference_pattern, phase_pattern)
return hologram
```
### FFT-Based Spatial Frequency Processing
```python
def spatial_frequency_encoding(self, spatial_pattern):
"""Encode spatial patterns using FFT"""
# 2D Fourier transform for spatial frequencies
fft_pattern = torch.fft.fft2(spatial_pattern)
# Extract magnitude and phase
magnitude = torch.abs(fft_pattern)
phase = torch.angle(fft_pattern)
# Apply frequency-domain filtering
filtered_magnitude = self.frequency_filter(magnitude)
# Reconstruct complex pattern
filtered_pattern = filtered_magnitude * torch.exp(1j * phase)
return filtered_pattern
```
### Associative Memory Retrieval
```python
def associative_retrieval(self, query_pattern, stored_holograms):
"""Retrieve associated memories using holographic correlation"""
correlations = []
for hologram in stored_holograms:
# Cross-correlation in frequency domain
query_fft = torch.fft.fft2(query_pattern)
hologram_fft = torch.fft.fft2(hologram)
# Correlation: F⁻¹[F(query) * conj(F(hologram))]
correlation = torch.fft.ifft2(query_fft * torch.conj(hologram_fft))
# Find correlation peak
max_correlation = torch.max(torch.abs(correlation))
correlations.append(max_correlation)
return torch.stack(correlations)
```
---
## 🚀 RTX GPU Optimization
### Tensor Core Optimization
The RTX optimizer aligns operations for maximum Tensor Core efficiency:
```python
def optimize_for_tensor_cores(self, layer_dims):
"""Optimize layer dimensions for Tensor Core efficiency"""
optimized_dims = []
for dim in layer_dims:
if self.has_tensor_cores:
# Align to multiples of 8 for FP16 Tensor Cores
aligned_dim = ((dim + 7) // 8) * 8
else:
# Standard alignment for regular cores
aligned_dim = ((dim + 3) // 4) * 4
optimized_dims.append(aligned_dim)
return optimized_dims
```
### Mixed Precision Training
```python
def mixed_precision_forward(self, model, input_tensor):
"""Forward pass with automatic mixed precision"""
if self.use_mixed_precision:
with torch.amp.autocast('cuda', dtype=self.precision_dtype):
output = model(input_tensor)
else:
output = model(input_tensor)
return output
def mixed_precision_backward(self, loss, optimizer):
"""Backward pass with gradient scaling"""
if self.use_mixed_precision:
# Scale loss to prevent underflow
self.grad_scaler.scale(loss).backward()
# Unscale gradients and step
self.grad_scaler.step(optimizer)
self.grad_scaler.update()
else:
loss.backward()
optimizer.step()
```
### Dynamic Memory Management
```python
def optimize_memory_usage(self):
"""Optimize GPU memory allocation patterns"""
# Clear fragmented memory
torch.cuda.empty_cache()
# Set memory fraction to prevent OOM
if torch.cuda.is_available():
torch.cuda.set_per_process_memory_fraction(0.9)
# Enable memory pool for efficient allocation
if hasattr(torch.cuda, 'set_memory_pool'):
pool = torch.cuda.memory.MemoryPool()
torch.cuda.set_memory_pool(pool)
```
---
## 🔧 Model Integration Architecture
### Unified Forward Pass
The complete NEBULA model integrates all components:
```python
def unified_forward(self, input_tensor):
"""Unified forward pass through all NEBULA components"""
batch_size = input_tensor.shape[0]
results = {}
# 1. Photonic processing
photonic_output = self.photonic_raytracer(input_tensor)
results['photonic_features'] = photonic_output
# 2. Quantum memory processing
quantum_output = self.quantum_memory_bank(photonic_output)
results['quantum_memory'] = quantum_output
# 3. Holographic memory retrieval
holographic_output = self.holographic_memory(
query=quantum_output, mode='retrieve'
)
results['holographic_retrieval'] = holographic_output
# 4. Feature integration
integrated_features = torch.cat([
photonic_output,
quantum_output,
holographic_output['retrieved_knowledge']
], dim=-1)
# 5. Final classification
main_output = self.classifier(integrated_features)
constraint_violations = self.constraint_detector(main_output)
results.update({
'main_output': main_output,
'constraint_violations': constraint_violations,
'integrated_features': integrated_features
})
return results
```
---
## 📊 Performance Optimization Techniques
### Gradient Flow Optimization
```python
def optimize_gradients(self):
"""Ensure stable gradient flow through all components"""
# Gradient clipping for stability
torch.nn.utils.clip_grad_norm_(self.parameters(), max_norm=1.0)
# Check for gradient explosion/vanishing
total_norm = 0
for p in self.parameters():
if p.grad is not None:
param_norm = p.grad.data.norm(2)
total_norm += param_norm.item() ** 2
total_norm = total_norm ** (1. / 2)
return total_norm
```
### Computational Efficiency Monitoring
```python
def profile_forward_pass(self, input_tensor):
"""Profile computational efficiency of forward pass"""
import time
torch.cuda.synchronize()
start_time = time.time()
# Component-wise timing
timings = {}
# Photonic timing
torch.cuda.synchronize()
photonic_start = time.time()
photonic_out = self.photonic_raytracer(input_tensor)
torch.cuda.synchronize()
timings['photonic'] = time.time() - photonic_start
# Quantum timing
torch.cuda.synchronize()
quantum_start = time.time()
quantum_out = self.quantum_memory_bank(photonic_out)
torch.cuda.synchronize()
timings['quantum'] = time.time() - quantum_start
# Holographic timing
torch.cuda.synchronize()
holo_start = time.time()
holo_out = self.holographic_memory(quantum_out, mode='retrieve')
torch.cuda.synchronize()
timings['holographic'] = time.time() - holo_start
torch.cuda.synchronize()
total_time = time.time() - start_time
timings['total'] = total_time
return timings
```
---
## 🧪 Scientific Validation Framework
### Statistical Significance Testing
```python
def validate_statistical_significance(self, model_scores, baseline_scores, alpha=0.05):
"""Perform statistical significance testing"""
from scipy import stats
# Perform t-test
t_statistic, p_value = stats.ttest_ind(model_scores, baseline_scores)
# Calculate effect size (Cohen's d)
pooled_std = np.sqrt(((len(model_scores)-1)*np.std(model_scores)**2 +
(len(baseline_scores)-1)*np.std(baseline_scores)**2) /
(len(model_scores) + len(baseline_scores) - 2))
cohens_d = (np.mean(model_scores) - np.mean(baseline_scores)) / pooled_std
is_significant = p_value < alpha
return {
't_statistic': t_statistic,
'p_value': p_value,
'cohens_d': cohens_d,
'is_significant': is_significant,
'effect_size': 'large' if abs(cohens_d) > 0.8 else 'medium' if abs(cohens_d) > 0.5 else 'small'
}
```
### Reproducibility Verification
```python
def verify_reproducibility(self, seed=42, num_runs=5):
"""Verify model reproducibility across multiple runs"""
results = []
for run in range(num_runs):
# Set all random seeds
torch.manual_seed(seed + run)
np.random.seed(seed + run)
torch.cuda.manual_seed_all(seed + run)
# Ensure deterministic operations
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Run evaluation
model_copy = self.create_fresh_model()
accuracy = self.evaluate_model(model_copy)
results.append(accuracy)
# Calculate consistency metrics
mean_accuracy = np.mean(results)
std_accuracy = np.std(results)
cv = std_accuracy / mean_accuracy # Coefficient of variation
return {
'mean_accuracy': mean_accuracy,
'std_accuracy': std_accuracy,
'coefficient_variation': cv,
'all_results': results,
'is_reproducible': cv < 0.05 # Less than 5% variation
}
```
---
This technical documentation provides the complete implementation details for all NEBULA v0.4 components, ensuring full reproducibility and scientific transparency.
**Equipo NEBULA: Francisco Angulo de Lafuente y Ángel Vega**
*Project NEBULA - Authentic Photonic Neural Networks* |