File size: 14,546 Bytes
b2a8800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
# NEBULA v0.4 - Technical Implementation Details

**Equipo NEBULA: Francisco Angulo de Lafuente y Ángel Vega**

---

## 🔬 Photonic Neural Network Implementation

### Authentic Optical Physics Simulation

The photonic component uses real optical physics equations implemented in CUDA-accelerated PyTorch:

#### 1. Snell's Law Refraction
```python
def apply_snells_law(self, incident_angle, n1, n2):
    """Apply Snell's law: n1*sin(θ1) = n2*sin(θ2)"""
    sin_theta1 = torch.sin(incident_angle)
    sin_theta2 = (n1 / n2) * sin_theta1
    
    # Handle total internal reflection
    sin_theta2 = torch.clamp(sin_theta2, -1.0, 1.0)
    refracted_angle = torch.asin(sin_theta2)
    return refracted_angle
```

#### 2. Beer-Lambert Absorption
```python  
def beer_lambert_absorption(self, intensity, absorption_coeff, path_length):
    """Beer-Lambert law: I = I₀ * exp(-α * L)"""
    return intensity * torch.exp(-absorption_coeff * path_length)
```

#### 3. Fresnel Reflection
```python
def fresnel_reflection(self, n1, n2):
    """Fresnel equations for reflection coefficient"""
    R = ((n1 - n2) / (n1 + n2))**2
    T = 1.0 - R  # Transmission coefficient
    return R, T
```

#### 4. Optical Interference
```python
def optical_interference(self, wave1, wave2, phase_difference):
    """Two-wave interference pattern"""
    amplitude = torch.sqrt(wave1**2 + wave2**2 + 2*wave1*wave2*torch.cos(phase_difference))
    return amplitude
```

### Wavelength Spectrum Processing

The model processes the full electromagnetic spectrum from UV to IR:

```python
WAVELENGTH_RANGES = {
    'UV': (200e-9, 400e-9),      # Ultraviolet
    'Visible': (400e-9, 700e-9), # Visible light  
    'NIR': (700e-9, 1400e-9),    # Near-infrared
    'IR': (1400e-9, 3000e-9)     # Infrared
}

def process_spectrum(self, input_tensor):
    """Process input across electromagnetic spectrum"""
    spectral_outputs = []
    
    for band, (λ_min, λ_max) in self.WAVELENGTH_RANGES.items():
        # Calculate refractive index for wavelength
        n = self.sellmeier_equation(λ_min, λ_max)
        
        # Process with wavelength-dependent optics
        output = self.optical_ray_interaction(input_tensor, n, λ_min)
        spectral_outputs.append(output)
    
    return torch.stack(spectral_outputs, dim=-1)
```

---

## ⚛️ Quantum Memory System

### Authentic Quantum Gate Implementation

All quantum gates use proper unitary matrices following quantum mechanics:

#### Pauli Gates
```python
def pauli_x_gate(self):
    """Pauli-X (bit flip) gate"""
    return torch.tensor([[0, 1], [1, 0]], dtype=torch.complex64)

def pauli_y_gate(self):
    """Pauli-Y gate"""  
    return torch.tensor([[0, -1j], [1j, 0]], dtype=torch.complex64)

def pauli_z_gate(self):
    """Pauli-Z (phase flip) gate"""
    return torch.tensor([[1, 0], [0, -1]], dtype=torch.complex64)
```

#### Rotation Gates
```python
def rx_gate(self, theta):
    """X-rotation gate: RX(θ) = exp(-iθX/2)"""
    cos_half = torch.cos(theta / 2)
    sin_half = torch.sin(theta / 2)
    
    return torch.tensor([
        [cos_half, -1j * sin_half],
        [-1j * sin_half, cos_half]
    ], dtype=torch.complex64)

def ry_gate(self, theta):
    """Y-rotation gate: RY(θ) = exp(-iθY/2)"""
    cos_half = torch.cos(theta / 2)
    sin_half = torch.sin(theta / 2)
    
    return torch.tensor([
        [cos_half, -sin_half],
        [sin_half, cos_half]
    ], dtype=torch.complex64)
```

### 4-Qubit Quantum Circuits

Each quantum memory neuron operates a 4-qubit system:

```python
def create_4qubit_circuit(self, input_data):
    """Create and execute 4-qubit quantum circuit"""
    # Initialize 4-qubit state |0000⟩
    state = torch.zeros(16, dtype=torch.complex64)
    state[0] = 1.0  # |0000⟩ state
    
    # Apply parametrized quantum gates
    for i in range(4):
        # Single-qubit rotations
        theta_x = input_data[i * 3]
        theta_y = input_data[i * 3 + 1] 
        theta_z = input_data[i * 3 + 2]
        
        state = self.apply_single_qubit_gate(state, self.rx_gate(theta_x), i)
        state = self.apply_single_qubit_gate(state, self.ry_gate(theta_y), i)
        state = self.apply_single_qubit_gate(state, self.rz_gate(theta_z), i)
    
    # Apply entangling gates (CNOT)
    for i in range(3):
        state = self.apply_cnot_gate(state, control=i, target=i+1)
    
    return state
```

### Quantum State Measurement

```python
def measure_quantum_state(self, quantum_state):
    """Measure quantum state and return classical information"""
    # Calculate measurement probabilities
    probabilities = torch.abs(quantum_state)**2
    
    # Expectation values for Pauli operators
    expectations = []
    for pauli_op in [self.pauli_x, self.pauli_y, self.pauli_z]:
        expectation = torch.real(torch.conj(quantum_state) @ pauli_op @ quantum_state)
        expectations.append(expectation)
    
    return torch.stack(expectations)
```

---

## 🌈 Holographic Memory System

### Complex Number Holographic Storage

The holographic memory uses complex numbers to store interference patterns:

```python
def holographic_encode(self, object_beam, reference_beam):
    """Create holographic interference pattern"""
    # Convert to complex representation
    object_complex = torch.complex(object_beam, torch.zeros_like(object_beam))
    reference_complex = torch.complex(reference_beam, torch.zeros_like(reference_beam))
    
    # Create interference pattern: |O + R|²
    total_beam = object_complex + reference_complex
    interference_pattern = torch.abs(total_beam)**2
    
    # Store phase information
    phase_pattern = torch.angle(total_beam)
    
    # Combine amplitude and phase
    hologram = torch.complex(interference_pattern, phase_pattern)
    
    return hologram
```

### FFT-Based Spatial Frequency Processing

```python
def spatial_frequency_encoding(self, spatial_pattern):
    """Encode spatial patterns using FFT"""
    # 2D Fourier transform for spatial frequencies
    fft_pattern = torch.fft.fft2(spatial_pattern)
    
    # Extract magnitude and phase
    magnitude = torch.abs(fft_pattern)
    phase = torch.angle(fft_pattern)
    
    # Apply frequency-domain filtering
    filtered_magnitude = self.frequency_filter(magnitude)
    
    # Reconstruct complex pattern
    filtered_pattern = filtered_magnitude * torch.exp(1j * phase)
    
    return filtered_pattern
```

### Associative Memory Retrieval

```python
def associative_retrieval(self, query_pattern, stored_holograms):
    """Retrieve associated memories using holographic correlation"""
    correlations = []
    
    for hologram in stored_holograms:
        # Cross-correlation in frequency domain
        query_fft = torch.fft.fft2(query_pattern)
        hologram_fft = torch.fft.fft2(hologram)
        
        # Correlation: F⁻¹[F(query) * conj(F(hologram))]
        correlation = torch.fft.ifft2(query_fft * torch.conj(hologram_fft))
        
        # Find correlation peak
        max_correlation = torch.max(torch.abs(correlation))
        correlations.append(max_correlation)
    
    return torch.stack(correlations)
```

---

## 🚀 RTX GPU Optimization

### Tensor Core Optimization

The RTX optimizer aligns operations for maximum Tensor Core efficiency:

```python
def optimize_for_tensor_cores(self, layer_dims):
    """Optimize layer dimensions for Tensor Core efficiency"""
    optimized_dims = []
    
    for dim in layer_dims:
        if self.has_tensor_cores:
            # Align to multiples of 8 for FP16 Tensor Cores
            aligned_dim = ((dim + 7) // 8) * 8
        else:
            # Standard alignment for regular cores
            aligned_dim = ((dim + 3) // 4) * 4
        
        optimized_dims.append(aligned_dim)
    
    return optimized_dims
```

### Mixed Precision Training

```python
def mixed_precision_forward(self, model, input_tensor):
    """Forward pass with automatic mixed precision"""
    if self.use_mixed_precision:
        with torch.amp.autocast('cuda', dtype=self.precision_dtype):
            output = model(input_tensor)
    else:
        output = model(input_tensor)
    
    return output

def mixed_precision_backward(self, loss, optimizer):
    """Backward pass with gradient scaling"""
    if self.use_mixed_precision:
        # Scale loss to prevent underflow
        self.grad_scaler.scale(loss).backward()
        
        # Unscale gradients and step
        self.grad_scaler.step(optimizer) 
        self.grad_scaler.update()
    else:
        loss.backward()
        optimizer.step()
```

### Dynamic Memory Management

```python
def optimize_memory_usage(self):
    """Optimize GPU memory allocation patterns"""
    # Clear fragmented memory
    torch.cuda.empty_cache()
    
    # Set memory fraction to prevent OOM
    if torch.cuda.is_available():
        torch.cuda.set_per_process_memory_fraction(0.9)
    
    # Enable memory pool for efficient allocation
    if hasattr(torch.cuda, 'set_memory_pool'):
        pool = torch.cuda.memory.MemoryPool()
        torch.cuda.set_memory_pool(pool)
```

---

## 🔧 Model Integration Architecture

### Unified Forward Pass

The complete NEBULA model integrates all components:

```python
def unified_forward(self, input_tensor):
    """Unified forward pass through all NEBULA components"""
    batch_size = input_tensor.shape[0]
    results = {}
    
    # 1. Photonic processing
    photonic_output = self.photonic_raytracer(input_tensor)
    results['photonic_features'] = photonic_output
    
    # 2. Quantum memory processing  
    quantum_output = self.quantum_memory_bank(photonic_output)
    results['quantum_memory'] = quantum_output
    
    # 3. Holographic memory retrieval
    holographic_output = self.holographic_memory(
        query=quantum_output, mode='retrieve'
    )
    results['holographic_retrieval'] = holographic_output
    
    # 4. Feature integration
    integrated_features = torch.cat([
        photonic_output,
        quantum_output, 
        holographic_output['retrieved_knowledge']
    ], dim=-1)
    
    # 5. Final classification
    main_output = self.classifier(integrated_features)
    constraint_violations = self.constraint_detector(main_output)
    
    results.update({
        'main_output': main_output,
        'constraint_violations': constraint_violations,
        'integrated_features': integrated_features
    })
    
    return results
```

---

## 📊 Performance Optimization Techniques

### Gradient Flow Optimization

```python
def optimize_gradients(self):
    """Ensure stable gradient flow through all components"""
    # Gradient clipping for stability
    torch.nn.utils.clip_grad_norm_(self.parameters(), max_norm=1.0)
    
    # Check for gradient explosion/vanishing
    total_norm = 0
    for p in self.parameters():
        if p.grad is not None:
            param_norm = p.grad.data.norm(2)
            total_norm += param_norm.item() ** 2
    
    total_norm = total_norm ** (1. / 2)
    
    return total_norm
```

### Computational Efficiency Monitoring

```python
def profile_forward_pass(self, input_tensor):
    """Profile computational efficiency of forward pass"""
    import time
    
    torch.cuda.synchronize()
    start_time = time.time()
    
    # Component-wise timing
    timings = {}
    
    # Photonic timing
    torch.cuda.synchronize()
    photonic_start = time.time()
    photonic_out = self.photonic_raytracer(input_tensor)
    torch.cuda.synchronize()
    timings['photonic'] = time.time() - photonic_start
    
    # Quantum timing  
    torch.cuda.synchronize()
    quantum_start = time.time()
    quantum_out = self.quantum_memory_bank(photonic_out)
    torch.cuda.synchronize()
    timings['quantum'] = time.time() - quantum_start
    
    # Holographic timing
    torch.cuda.synchronize()
    holo_start = time.time()
    holo_out = self.holographic_memory(quantum_out, mode='retrieve')
    torch.cuda.synchronize()
    timings['holographic'] = time.time() - holo_start
    
    torch.cuda.synchronize()
    total_time = time.time() - start_time
    timings['total'] = total_time
    
    return timings
```

---

## 🧪 Scientific Validation Framework

### Statistical Significance Testing

```python
def validate_statistical_significance(self, model_scores, baseline_scores, alpha=0.05):
    """Perform statistical significance testing"""
    from scipy import stats
    
    # Perform t-test
    t_statistic, p_value = stats.ttest_ind(model_scores, baseline_scores)
    
    # Calculate effect size (Cohen's d)
    pooled_std = np.sqrt(((len(model_scores)-1)*np.std(model_scores)**2 + 
                         (len(baseline_scores)-1)*np.std(baseline_scores)**2) / 
                        (len(model_scores) + len(baseline_scores) - 2))
    
    cohens_d = (np.mean(model_scores) - np.mean(baseline_scores)) / pooled_std
    
    is_significant = p_value < alpha
    
    return {
        't_statistic': t_statistic,
        'p_value': p_value,
        'cohens_d': cohens_d,
        'is_significant': is_significant,
        'effect_size': 'large' if abs(cohens_d) > 0.8 else 'medium' if abs(cohens_d) > 0.5 else 'small'
    }
```

### Reproducibility Verification

```python
def verify_reproducibility(self, seed=42, num_runs=5):
    """Verify model reproducibility across multiple runs"""
    results = []
    
    for run in range(num_runs):
        # Set all random seeds
        torch.manual_seed(seed + run)
        np.random.seed(seed + run)
        torch.cuda.manual_seed_all(seed + run)
        
        # Ensure deterministic operations
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False
        
        # Run evaluation
        model_copy = self.create_fresh_model()
        accuracy = self.evaluate_model(model_copy)
        results.append(accuracy)
    
    # Calculate consistency metrics
    mean_accuracy = np.mean(results)
    std_accuracy = np.std(results)
    cv = std_accuracy / mean_accuracy  # Coefficient of variation
    
    return {
        'mean_accuracy': mean_accuracy,
        'std_accuracy': std_accuracy, 
        'coefficient_variation': cv,
        'all_results': results,
        'is_reproducible': cv < 0.05  # Less than 5% variation
    }
```

---

This technical documentation provides the complete implementation details for all NEBULA v0.4 components, ensuring full reproducibility and scientific transparency.

**Equipo NEBULA: Francisco Angulo de Lafuente y Ángel Vega**  
*Project NEBULA - Authentic Photonic Neural Networks*