File size: 20,683 Bytes
d94fa6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
#!/usr/bin/env python3
"""
NEBULA v0.4 TRAINING SYSTEM
Equipo NEBULA: Francisco Angulo de Lafuente y Ángel

SISTEMA DE ENTRENAMIENTO COMPLETO PARA NEBULA v0.4
- Training loop optimizado para RTX GPUs con mixed precision
- Dataset generator de sudokus realistas validado
- Early stopping con validation metrics
- Checkpoint saving y model persistence
- Comprehensive logging y monitoring
- Constraint-aware training schedule

PASO A PASO: Entrenamiento riguroso según nuestros criterios
"""

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import ReduceLROnPlateau, CosineAnnealingLR
import numpy as np
import math
import time
import json
import os
from typing import Dict, Tuple, Optional, List
from dataclasses import dataclass
import random

# Import our unified model y dataset functions
from NEBULA_UNIFIED_v04 import NEBULA_HRM_Sudoku_v04

@dataclass
class TrainingConfig:
    """Configuration para training setup"""
    epochs: int = 50
    batch_size: int = 32
    learning_rate: float = 1e-3
    weight_decay: float = 1e-5
    constraint_weight_start: float = 2.0
    constraint_weight_end: float = 5.0
    distillation_weight: float = 0.3
    validation_split: float = 0.2
    early_stopping_patience: int = 10
    checkpoint_every: int = 5
    mixed_precision: bool = True
    gradient_clip_norm: float = 1.0
    
class NEBULASudokuDataset:
    """
    Dataset generator para sudokus usando backtracking validado
    Basado en nuestro generador probado que produce sudokus válidos
    """
    
    def __init__(self, num_samples: int, mask_rate: float = 0.65, device: str = 'cuda'):
        self.num_samples = num_samples
        self.mask_rate = mask_rate
        self.device = device
        
    def generate_batch(self, batch_size: int) -> Tuple[torch.Tensor, torch.Tensor]:
        """Generate batch of sudoku input-target pairs"""
        inputs = []
        targets = []
        
        for _ in range(batch_size):
            # Generate complete sudoku using our validated backtracking
            full_sudoku = self.generate_full_sudoku()
            
            # Create masked version for input
            input_sudoku = self.mask_sudoku(full_sudoku, self.mask_rate)
            
            inputs.append(torch.tensor(input_sudoku, dtype=torch.long))
            targets.append(torch.tensor(full_sudoku, dtype=torch.long))
            
        return torch.stack(inputs).to(self.device), torch.stack(targets).to(self.device)
    
    def generate_full_sudoku(self, seed: Optional[int] = None) -> List[List[int]]:
        """Generate complete valid sudoku using backtracking"""
        if seed is not None:
            random.seed(seed)
            
        digits = list(range(1, 10))
        grid = [[0]*9 for _ in range(9)]
        
        # Randomized cell order para variability
        cells = [(i, j) for i in range(9) for j in range(9)]
        random.shuffle(cells)
        
        def is_valid(grid, r, c, val):
            # Check row
            for j in range(9):
                if grid[r][j] == val:
                    return False
            # Check column
            for i in range(9):
                if grid[i][c] == val:
                    return False
            # Check 3x3 box
            br, bc = (r // 3) * 3, (c // 3) * 3
            for i in range(br, br+3):
                for j in range(bc, bc+3):
                    if grid[i][j] == val:
                        return False
            return True
            
        def backtrack(idx=0):
            if idx >= 81:
                return True
            i, j = cells[idx]
            choices = digits[:]
            random.shuffle(choices)
            for val in choices:
                if is_valid(grid, i, j, val):
                    grid[i][j] = val
                    if backtrack(idx + 1):
                        return True
                    grid[i][j] = 0
            return False
            
        success = backtrack(0)
        if not success:
            # Fallback: try with ordered cells
            grid = [[0]*9 for _ in range(9)]
            cells = [(i, j) for i in range(9) for j in range(9)]
            success = backtrack(0)
            
        if not success:
            raise RuntimeError("Failed to generate valid sudoku")
            
        return grid
    
    def mask_sudoku(self, full_grid: List[List[int]], mask_rate: float) -> List[List[int]]:
        """Create masked sudoku for training input"""
        masked = [row[:] for row in full_grid]  # Deep copy
        
        # Calculate cells to keep
        total_cells = 81
        cells_to_keep = int(total_cells * (1.0 - mask_rate))
        
        # Get all positions
        positions = [(i, j) for i in range(9) for j in range(9)]
        random.shuffle(positions)
        
        # Mask cells (set to 0) except for cells_to_keep
        for i, (r, c) in enumerate(positions):
            if i >= cells_to_keep:
                masked[r][c] = 0
                
        return masked

class NEBULATrainer:
    """
    NEBULA v0.4 Training System
    
    Comprehensive training system con:
    - Mixed precision training optimizado para RTX
    - Constraint-aware loss scheduling
    - Advanced optimization strategies
    - Comprehensive validation y monitoring
    """
    
    def __init__(self, config: TrainingConfig, device: str = 'cuda'):
        self.config = config
        self.device = device
        
        print(f"[NEBULA TRAINER] Inicializando sistema de entrenamiento:")
        print(f"  - Device: {device}")
        print(f"  - Epochs: {config.epochs}")
        print(f"  - Batch size: {config.batch_size}")
        print(f"  - Learning rate: {config.learning_rate}")
        print(f"  - Mixed precision: {config.mixed_precision}")
        
        # Initialize model
        self.model = NEBULA_HRM_Sudoku_v04(
            grid_size=9,
            device=device,
            use_rtx_optimization=True,
            use_mixed_precision=config.mixed_precision
        )
        
        # Setup optimizer
        self.optimizer = optim.AdamW(
            self.model.parameters(),
            lr=config.learning_rate,
            weight_decay=config.weight_decay,
            betas=(0.9, 0.999)
        )
        
        # Learning rate scheduler
        self.scheduler = ReduceLROnPlateau(
            self.optimizer, 
            mode='min', 
            factor=0.5, 
            patience=5
        )
        
        # Mixed precision scaler if available
        if config.mixed_precision and hasattr(torch.cuda.amp, 'GradScaler'):
            try:
                # Try new API first
                from torch.amp import GradScaler
                self.scaler = GradScaler('cuda')
                print(f"  - Mixed precision: Enabled (new API)")
            except ImportError:
                # Fallback to old API
                from torch.cuda.amp import GradScaler
                self.scaler = GradScaler()
                print(f"  - Mixed precision: Enabled (legacy API)")
        else:
            self.scaler = None
            print(f"  - Mixed precision: Disabled")
            
        # Training state
        self.current_epoch = 0
        self.best_validation_loss = float('inf')
        self.best_model_state = None
        self.training_history = {
            'train_loss': [],
            'val_loss': [],
            'train_accuracy': [],
            'val_accuracy': [],
            'constraint_violations': [],
            'learning_rate': []
        }
        self.patience_counter = 0
        
        # Create checkpoint directory
        self.checkpoint_dir = "nebula_checkpoints"
        os.makedirs(self.checkpoint_dir, exist_ok=True)
        
    def compute_constraint_schedule(self, epoch: int) -> float:
        """Compute constraint weight scheduling"""
        progress = epoch / self.config.epochs
        weight = self.config.constraint_weight_start + (
            self.config.constraint_weight_end - self.config.constraint_weight_start
        ) * progress
        return weight
        
    def compute_accuracy(self, logits: torch.Tensor, targets: torch.Tensor, 
                        input_mask: torch.Tensor) -> float:
        """Compute accuracy solo en celdas que necesitan predicción"""
        predictions = torch.argmax(logits, dim=-1)
        
        # Mask: solo evaluar celdas donde input era 0 (vacías)
        eval_mask = (input_mask == 0) & (targets > 0)
        
        if eval_mask.sum() == 0:
            return 0.0
            
        correct = (predictions == targets) & eval_mask
        accuracy = correct.sum().item() / eval_mask.sum().item()
        return accuracy
        
    def train_epoch(self, dataset: NEBULASudokuDataset) -> Dict[str, float]:
        """Train single epoch"""
        self.model.train()
        
        epoch_loss = 0.0
        epoch_accuracy = 0.0
        epoch_ce_loss = 0.0
        epoch_constraint_loss = 0.0
        epoch_distillation_loss = 0.0
        num_batches = 0
        
        # Dynamic constraint weight
        constraint_weight = self.compute_constraint_schedule(self.current_epoch)
        
        # Training loop
        steps_per_epoch = max(1, dataset.num_samples // self.config.batch_size)
        
        for step in range(steps_per_epoch):
            # Generate fresh batch
            inputs, targets = dataset.generate_batch(self.config.batch_size)
            
            self.optimizer.zero_grad()
            
            if self.scaler is not None:
                # Mixed precision training
                with torch.cuda.amp.autocast():
                    outputs = self.model(inputs)
                    loss_dict = self.model.compute_loss(
                        outputs, targets,
                        constraint_weight=constraint_weight,
                        distillation_weight=self.config.distillation_weight
                    )
                    total_loss = loss_dict['total_loss']
                
                # Scaled backward pass
                self.scaler.scale(total_loss).backward()
                
                # Gradient clipping
                self.scaler.unscale_(self.optimizer)
                torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.config.gradient_clip_norm)
                
                # Optimizer step
                self.scaler.step(self.optimizer)
                self.scaler.update()
                
            else:
                # Standard precision training
                outputs = self.model(inputs)
                loss_dict = self.model.compute_loss(
                    outputs, targets,
                    constraint_weight=constraint_weight,
                    distillation_weight=self.config.distillation_weight
                )
                total_loss = loss_dict['total_loss']
                
                # Backward pass
                total_loss.backward()
                
                # Gradient clipping
                torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.config.gradient_clip_norm)
                
                # Optimizer step
                self.optimizer.step()
            
            # Accumulate metrics
            with torch.no_grad():
                accuracy = self.compute_accuracy(outputs['logits'], targets, inputs)
                
            epoch_loss += total_loss.item()
            epoch_accuracy += accuracy
            epoch_ce_loss += loss_dict['ce_loss'].item()
            epoch_constraint_loss += loss_dict['constraint_loss'].item()
            epoch_distillation_loss += loss_dict['distillation_loss'].item()
            num_batches += 1
            
            # Progress logging
            if (step + 1) % max(1, steps_per_epoch // 10) == 0:
                print(f"  Step {step+1}/{steps_per_epoch}: Loss={total_loss.item():.4f}, Acc={accuracy:.4f}")
        
        # Average metrics
        return {
            'loss': epoch_loss / num_batches,
            'accuracy': epoch_accuracy / num_batches,
            'ce_loss': epoch_ce_loss / num_batches,
            'constraint_loss': epoch_constraint_loss / num_batches,
            'distillation_loss': epoch_distillation_loss / num_batches,
            'constraint_weight': constraint_weight
        }
    
    def validate_epoch(self, dataset: NEBULASudokuDataset) -> Dict[str, float]:
        """Validation epoch"""
        self.model.eval()
        
        val_loss = 0.0
        val_accuracy = 0.0
        val_constraint_violations = 0.0
        num_batches = 0
        
        # Validation batches
        val_steps = max(1, (dataset.num_samples * self.config.validation_split) // self.config.batch_size)
        
        with torch.no_grad():
            for step in range(val_steps):
                inputs, targets = dataset.generate_batch(self.config.batch_size)
                
                if self.scaler is not None:
                    with torch.cuda.amp.autocast():
                        outputs = self.model(inputs)
                        loss_dict = self.model.compute_loss(outputs, targets)
                else:
                    outputs = self.model(inputs)
                    loss_dict = self.model.compute_loss(outputs, targets)
                
                accuracy = self.compute_accuracy(outputs['logits'], targets, inputs)
                
                val_loss += loss_dict['total_loss'].item()
                val_accuracy += accuracy
                val_constraint_violations += outputs['constraint_violations'].sum().item()
                num_batches += 1
        
        return {
            'loss': val_loss / num_batches,
            'accuracy': val_accuracy / num_batches,
            'constraint_violations': val_constraint_violations / num_batches
        }
    
    def save_checkpoint(self, epoch: int, is_best: bool = False):
        """Save model checkpoint"""
        checkpoint = {
            'epoch': epoch,
            'model_state_dict': self.model.state_dict(),
            'optimizer_state_dict': self.optimizer.state_dict(),
            'scheduler_state_dict': self.scheduler.state_dict(),
            'training_history': self.training_history,
            'config': self.config,
            'best_validation_loss': self.best_validation_loss
        }
        
        if self.scaler is not None:
            checkpoint['scaler_state_dict'] = self.scaler.state_dict()
        
        # Save regular checkpoint
        checkpoint_path = os.path.join(self.checkpoint_dir, f"nebula_v04_epoch_{epoch}.pt")
        torch.save(checkpoint, checkpoint_path)
        
        # Save best model
        if is_best:
            best_path = os.path.join(self.checkpoint_dir, "nebula_v04_best.pt")
            torch.save(checkpoint, best_path)
            print(f"  Best model saved at epoch {epoch}")
    
    def train(self, num_training_samples: int = 10000) -> Dict[str, List]:
        """
        TRAINING LOOP PRINCIPAL
        
        Training completo con early stopping y validation
        """
        print(f"\n{'='*80}")
        print(f"NEBULA v0.4 TRAINING INICIADO")
        print(f"{'='*80}")
        print(f"Training samples: {num_training_samples}")
        print(f"Validation split: {self.config.validation_split}")
        print(f"Model parameters: {self.model.count_parameters():,}")
        
        # Create datasets
        train_dataset = NEBULASudokuDataset(
            num_samples=int(num_training_samples * (1 - self.config.validation_split)),
            mask_rate=0.65,
            device=self.device
        )
        
        val_dataset = NEBULASudokuDataset(
            num_samples=int(num_training_samples * self.config.validation_split),
            mask_rate=0.65,
            device=self.device
        )
        
        print(f"Train dataset: {train_dataset.num_samples} samples")
        print(f"Val dataset: {val_dataset.num_samples} samples")
        
        # Training loop
        for epoch in range(self.config.epochs):
            self.current_epoch = epoch
            epoch_start_time = time.time()
            
            print(f"\nEpoch {epoch+1}/{self.config.epochs}")
            print("-" * 50)
            
            # Training
            train_metrics = self.train_epoch(train_dataset)
            
            # Validation
            val_metrics = self.validate_epoch(val_dataset)
            
            # Update scheduler
            self.scheduler.step(val_metrics['loss'])
            
            # Record metrics
            self.training_history['train_loss'].append(train_metrics['loss'])
            self.training_history['val_loss'].append(val_metrics['loss'])
            self.training_history['train_accuracy'].append(train_metrics['accuracy'])
            self.training_history['val_accuracy'].append(val_metrics['accuracy'])
            self.training_history['constraint_violations'].append(val_metrics['constraint_violations'])
            self.training_history['learning_rate'].append(self.optimizer.param_groups[0]['lr'])
            
            # Timing
            epoch_time = time.time() - epoch_start_time
            
            # Logging
            print(f"Train Loss: {train_metrics['loss']:.6f}, Train Acc: {train_metrics['accuracy']:.4f}")
            print(f"Val Loss: {val_metrics['loss']:.6f}, Val Acc: {val_metrics['accuracy']:.4f}")
            print(f"Constraint Violations: {val_metrics['constraint_violations']:.2f}")
            print(f"Constraint Weight: {train_metrics['constraint_weight']:.2f}")
            print(f"Learning Rate: {self.optimizer.param_groups[0]['lr']:.6f}")
            print(f"Epoch Time: {epoch_time:.1f}s")
            
            # Early stopping check
            is_best = val_metrics['loss'] < self.best_validation_loss
            if is_best:
                self.best_validation_loss = val_metrics['loss']
                self.best_model_state = self.model.state_dict().copy()
                self.patience_counter = 0
            else:
                self.patience_counter += 1
                
            # Save checkpoint
            if (epoch + 1) % self.config.checkpoint_every == 0:
                self.save_checkpoint(epoch + 1, is_best)
            
            # Early stopping
            if self.patience_counter >= self.config.early_stopping_patience:
                print(f"\nEarly stopping at epoch {epoch+1} (patience={self.config.early_stopping_patience})")
                break
        
        # Load best model
        if self.best_model_state is not None:
            self.model.load_state_dict(self.best_model_state)
            print(f"\nLoaded best model (val_loss={self.best_validation_loss:.6f})")
        
        # Final save
        self.save_checkpoint(self.current_epoch + 1, True)
        
        print(f"\n{'='*80}")
        print(f"NEBULA v0.4 TRAINING COMPLETADO")
        print(f"{'='*80}")
        print(f"Best validation loss: {self.best_validation_loss:.6f}")
        print(f"Total training time: {sum(self.training_history.get('epoch_times', [0])):.1f}s")
        
        return self.training_history

def main():
    """Main training execution"""
    print("NEBULA v0.4 TRAINING SYSTEM")
    print("Equipo NEBULA: Francisco Angulo de Lafuente y Ángel")
    print("Paso a paso, sin prisa, con calma")
    
    # Training configuration
    config = TrainingConfig(
        epochs=30,  # Reasonable para initial training
        batch_size=16,  # Balanced para RTX 3090
        learning_rate=1e-3,
        constraint_weight_start=1.0,
        constraint_weight_end=3.0,
        distillation_weight=0.2,
        early_stopping_patience=8,
        mixed_precision=True
    )
    
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    
    try:
        # Initialize trainer
        trainer = NEBULATrainer(config, device)
        
        # Start training
        training_history = trainer.train(num_training_samples=5000)  # Initial training
        
        # Save training history
        with open('nebula_v04_training_history.json', 'w') as f:
            json.dump(training_history, f, indent=2)
            
        print("\nTRAINING SUCCESSFUL")
        print("Model ready para benchmark testing")
        
    except Exception as e:
        print(f"\nTRAINING ERROR: {e}")
        import traceback
        traceback.print_exc()
        return False
        
    return True

if __name__ == "__main__":
    success = main()
    if success:
        print("NEBULA v0.4 trained successfully - Ready para benchmarking!")
    else:
        print("Training failed - Debug required")