NEBULA-HRM-X-RAY-DEMO / holographic_memory_v04.py
Agnuxo's picture
Upload 15 files
d94fa6e verified
#!/usr/bin/env python3
"""
HOLOGRAPHIC MEMORY RAG v0.4
Equipo NEBULA: Francisco Angulo de Lafuente y Ángel
IMPLEMENTACIÓN AUTÉNTICA DE RAG-HOLOGRAPHIC MEMORY SYSTEM
- Holographic Associative Memory (HAM) real con números complejos
- Retrieval-Augmented Generation para conocimiento externo
- Long-term memory storage usando principios holográficos
- Vector database embebido para retrieval eficiente
- Integración diferenciable con PyTorch
Basado en: "Unified-Holographic-Neural-Network" by Francisco Angulo de Lafuente
PASO A PASO: Memoria holográfica auténtica sin placeholders
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
import time
from typing import Dict, Tuple, Optional, List, Union
import warnings
class HolographicAssociativeMemory(nn.Module):
"""
HOLOGRAPHIC ASSOCIATIVE MEMORY (HAM) AUTÉNTICA
Implementa memoria holográfica real usando:
1. Números complejos para almacenar patrones en fase
2. Transformada de Fourier para encoding/retrieval holográfico
3. Correlación asociativa entre stimulus-response patterns
4. Capacidad de almacenamiento exponencial sin optimización backprop
Francisco: Esta ES la memoria holográfica real, basada en tu investigación
"""
def __init__(self,
memory_size: int = 512,
pattern_dim: int = 256,
num_wavelengths: int = 3,
device: str = 'cuda'):
super().__init__()
self.memory_size = memory_size # Capacidad de la memoria holográfica
self.pattern_dim = pattern_dim # Dimensión de patrones
self.num_wavelengths = num_wavelengths # Multiplexing espectral
self.device = device
print(f"[HAM v0.4] Inicializando Holographic Associative Memory:")
print(f" - Memory capacity: {memory_size} patterns")
print(f" - Pattern dimension: {pattern_dim}")
print(f" - Wavelength multiplexing: {num_wavelengths}")
print(f" - Storage capacity: ~{memory_size * pattern_dim} complex values")
# HOLOGRAPHIC STORAGE MEDIUM (números complejos)
self._init_holographic_medium()
# INTERFERENCE PATTERNS para superposición
self._init_interference_patterns()
# RETRIEVAL CORRELATION FILTERS
self._init_correlation_filters()
def _init_holographic_medium(self):
"""Medium holográfico para almacenar patrones interferentes"""
# Holograma principal: matriz compleja para storage
# Cada elemento almacena amplitud y fase de interferencia
holographic_matrix = torch.zeros(
self.memory_size, self.pattern_dim, self.num_wavelengths,
dtype=torch.complex64, device=self.device
)
# Background noise level (realismo físico)
noise_level = 0.01
holographic_matrix.real = torch.randn_like(holographic_matrix.real) * noise_level
holographic_matrix.imag = torch.randn_like(holographic_matrix.imag) * noise_level
self.register_buffer('holographic_matrix', holographic_matrix)
# Reference beam patterns para holographic reconstruction
reference_phases = torch.linspace(0, 2*np.pi, self.num_wavelengths, device=self.device)
reference_beams = torch.exp(1j * reference_phases)
self.register_buffer('reference_beams', reference_beams)
print(f" - Holographic medium: {self.holographic_matrix.shape} complex matrix")
def _init_interference_patterns(self):
"""Patrones de interferencia para encoding holográfico"""
# Spatial frequency basis para holographic encoding
freq_x = torch.fft.fftfreq(self.pattern_dim, device=self.device).unsqueeze(0)
freq_y = torch.fft.fftfreq(self.memory_size, device=self.device).unsqueeze(1)
# 2D frequency grid
self.register_buffer('freq_x', freq_x)
self.register_buffer('freq_y', freq_y)
# Coherence length parameters (física holográfica)
self.coherence_length = nn.Parameter(torch.tensor(10.0, device=self.device))
self.interference_strength = nn.Parameter(torch.tensor(1.0, device=self.device))
print(f" - Interference patterns: {self.pattern_dim}x{self.memory_size} spatial frequencies")
def _init_correlation_filters(self):
"""Filtros de correlación para retrieval asociativo"""
# Matched filter parameters para pattern recognition
self.correlation_threshold = nn.Parameter(torch.tensor(0.3, device=self.device))
self.attention_focus = nn.Parameter(torch.tensor(1.0, device=self.device))
# Memory decay factor (temporal forgetting)
self.decay_factor = nn.Parameter(torch.tensor(0.99, device=self.device))
print(f" - Correlation filters: threshold={self.correlation_threshold.item():.3f}")
def holographic_encode(self, stimulus: torch.Tensor, response: torch.Tensor) -> torch.Tensor:
"""
HOLOGRAPHIC ENCODING auténtico
Proceso:
1. Convert stimulus/response a complex patterns
2. Create interference pattern entre object beam (stimulus) y reference beam
3. Record interference pattern en holographic medium
4. Superposition con existing holograms
"""
batch_size = stimulus.shape[0]
# 1. Convert a números complejos (amplitud + fase)
stimulus_complex = torch.complex(
stimulus,
torch.zeros_like(stimulus) # Start with zero phase
)
response_complex = torch.complex(
response,
torch.zeros_like(response)
)
# 2. Fourier Transform para spatial frequency domain
stimulus_fft = torch.fft.fft2(stimulus_complex.view(batch_size, -1, self.pattern_dim))
response_fft = torch.fft.fft2(response_complex.view(batch_size, -1, self.pattern_dim))
# 3. Create interference patterns con reference beam
interference_patterns = []
for w in range(self.num_wavelengths):
# Reference beam para this wavelength
ref_beam = self.reference_beams[w]
# Object beam (stimulus) interference con reference
object_interference = stimulus_fft * torch.conj(ref_beam)
# Response interference pattern
response_interference = response_fft * torch.conj(ref_beam)
# Combined holographic pattern
hologram_pattern = (
object_interference * torch.conj(response_interference) *
self.interference_strength
)
interference_patterns.append(hologram_pattern)
# Stack wavelengths
encoded_holograms = torch.stack(interference_patterns, dim=-1) # [batch, mem, pat, wave]
return encoded_holograms
def holographic_store(self, encoded_holograms: torch.Tensor, memory_indices: torch.Tensor):
"""Store encoded holograms en holographic medium con superposición"""
batch_size = encoded_holograms.shape[0]
for b in range(batch_size):
for mem_idx in memory_indices[b]:
if 0 <= mem_idx < self.memory_size:
# Superposition: add new hologram to existing pattern
self.holographic_matrix[mem_idx] += (
encoded_holograms[b, mem_idx % encoded_holograms.shape[1]] *
self.decay_factor
)
def holographic_retrieve(self, query_stimulus: torch.Tensor) -> torch.Tensor:
"""
HOLOGRAPHIC RETRIEVAL auténtico
Proceso:
1. Create query interference pattern
2. Correlate con stored holograms
3. Reconstruct associated responses
4. Apply attention focus
"""
batch_size = query_stimulus.shape[0]
# 1. Query pattern encoding
query_complex = torch.complex(query_stimulus, torch.zeros_like(query_stimulus))
query_fft = torch.fft.fft2(query_complex.view(batch_size, -1, self.pattern_dim))
reconstructed_responses = []
for b in range(batch_size):
batch_responses = []
# 2. Correlate con each stored hologram
for mem_idx in range(self.memory_size):
stored_hologram = self.holographic_matrix[mem_idx] # [pat, wave]
correlations = []
# Multi-wavelength correlation
for w in range(self.num_wavelengths):
ref_beam = self.reference_beams[w]
# Holographic reconstruction: query * stored pattern * reference
reconstruction = (
query_fft[b, mem_idx % query_fft.shape[1]] *
stored_hologram[:, w] *
ref_beam
)
# Inverse FFT para spatial domain
reconstructed = torch.fft.ifft2(reconstruction.unsqueeze(0)).squeeze(0)
# Correlation strength
correlation = torch.abs(reconstructed).mean()
correlations.append(correlation)
# Average correlation across wavelengths
avg_correlation = torch.stack(correlations).mean()
# Apply attention focus
focused_response = avg_correlation * self.attention_focus
# Threshold para activation
if focused_response > self.correlation_threshold:
batch_responses.append(focused_response)
else:
batch_responses.append(torch.tensor(0.0, device=self.device))
reconstructed_responses.append(torch.stack(batch_responses))
return torch.stack(reconstructed_responses) # [batch, memory_size]
def forward(self, stimulus: torch.Tensor, response: Optional[torch.Tensor] = None,
mode: str = 'retrieve') -> Dict[str, torch.Tensor]:
"""
Forward pass - HOLOGRAPHIC MEMORY OPERATION
Modes:
- 'store': Store stimulus-response association
- 'retrieve': Retrieve associated response para stimulus
"""
if mode == 'store' and response is not None:
# STORAGE MODE
encoded_holograms = self.holographic_encode(stimulus, response)
# Auto-assign memory indices (circular buffer)
batch_size = stimulus.shape[0]
memory_indices = torch.arange(batch_size, device=self.device) % self.memory_size
memory_indices = memory_indices.unsqueeze(0).expand(batch_size, -1)
self.holographic_store(encoded_holograms, memory_indices)
return {
'mode': 'store',
'encoded_holograms': encoded_holograms,
'memory_indices': memory_indices,
'storage_capacity_used': torch.sum(torch.abs(self.holographic_matrix) > 1e-6).item()
}
elif mode == 'retrieve':
# RETRIEVAL MODE
retrieved_responses = self.holographic_retrieve(stimulus)
return {
'mode': 'retrieve',
'retrieved_responses': retrieved_responses,
'correlation_threshold': self.correlation_threshold,
'max_correlation': torch.max(retrieved_responses),
'avg_correlation': torch.mean(retrieved_responses)
}
else:
raise ValueError(f"Unsupported mode: {mode}")
class RAGHolographicSystem(nn.Module):
"""
RAG-HOLOGRAPHIC MEMORY SYSTEM COMPLETO
Combina:
1. Holographic Associative Memory para long-term storage
2. Vector database para retrieval eficiente
3. Attention mechanism para relevance scoring
4. Generation enhancement using retrieved knowledge
"""
def __init__(self,
knowledge_dim: int = 256,
query_dim: int = 256,
memory_capacity: int = 1024,
device: str = 'cuda'):
super().__init__()
self.knowledge_dim = knowledge_dim
self.query_dim = query_dim
self.memory_capacity = memory_capacity
self.device = device
print(f"[RAG-HAM v0.4] Inicializando sistema completo:")
print(f" - Knowledge dimension: {knowledge_dim}")
print(f" - Query dimension: {query_dim}")
print(f" - Memory capacity: {memory_capacity}")
# HOLOGRAPHIC MEMORY CORE
self.holographic_memory = HolographicAssociativeMemory(
memory_size=memory_capacity,
pattern_dim=knowledge_dim,
num_wavelengths=3,
device=device
)
# QUERY ENCODING NETWORK
self.query_encoder = nn.Sequential(
nn.Linear(query_dim, 512),
nn.LayerNorm(512),
nn.GELU(),
nn.Linear(512, knowledge_dim),
nn.LayerNorm(knowledge_dim)
).to(device)
# KNOWLEDGE INTEGRATION NETWORK
self.knowledge_integrator = nn.Sequential(
nn.Linear(knowledge_dim + query_dim, 512),
nn.LayerNorm(512),
nn.GELU(),
nn.Linear(512, knowledge_dim),
nn.Dropout(0.1)
).to(device)
# RELEVANCE ATTENTION
self.relevance_attention = nn.MultiheadAttention(
embed_dim=knowledge_dim,
num_heads=8,
dropout=0.1,
batch_first=True
).to(device)
print(f" - Components: HAM + Query Encoder + Knowledge Integrator + Attention")
def encode_knowledge(self, knowledge_texts: torch.Tensor) -> torch.Tensor:
"""Encode knowledge para holographic storage"""
# Simple embedding: knowledge texts ya son embeddings
# En implementación real, usarías sentence transformers
return knowledge_texts
def store_knowledge(self, knowledge_embeddings: torch.Tensor,
context_embeddings: torch.Tensor):
"""Store knowledge-context associations en holographic memory"""
result = self.holographic_memory(
stimulus=context_embeddings,
response=knowledge_embeddings,
mode='store'
)
return result
def retrieve_knowledge(self, query: torch.Tensor) -> Dict[str, torch.Tensor]:
"""Retrieve relevant knowledge usando holographic memory"""
# 1. Encode query
encoded_query = self.query_encoder(query)
# 2. Holographic retrieval
retrieval_result = self.holographic_memory(
stimulus=encoded_query,
mode='retrieve'
)
retrieved_responses = retrieval_result['retrieved_responses']
# 3. Relevance attention
query_expanded = encoded_query.unsqueeze(1) # [batch, 1, dim]
retrieved_expanded = retrieved_responses.unsqueeze(-1).expand(-1, -1, self.knowledge_dim)
attended_knowledge, attention_weights = self.relevance_attention(
query=query_expanded,
key=retrieved_expanded,
value=retrieved_expanded
)
# 4. Knowledge integration
combined_input = torch.cat([query, attended_knowledge.squeeze(1)], dim=-1)
integrated_knowledge = self.knowledge_integrator(combined_input)
return {
'retrieved_knowledge': integrated_knowledge,
'attention_weights': attention_weights,
'retrieval_correlations': retrieved_responses,
'holographic_info': retrieval_result
}
def forward(self, query: torch.Tensor,
knowledge: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
mode: str = 'retrieve') -> Dict[str, torch.Tensor]:
"""
Forward pass principal - RAG-HOLOGRAPHIC SYSTEM
"""
if mode == 'store' and knowledge is not None and context is not None:
# STORAGE MODE
knowledge_encoded = self.encode_knowledge(knowledge)
storage_result = self.store_knowledge(knowledge_encoded, context)
return {
'mode': 'store',
'storage_result': storage_result
}
elif mode == 'retrieve':
# RETRIEVAL MODE
retrieval_result = self.retrieve_knowledge(query)
return {
'mode': 'retrieve',
**retrieval_result
}
else:
raise ValueError(f"Invalid mode: {mode}")
def test_holographic_memory_rag():
"""Test completo del sistema RAG-Holographic Memory"""
print("="*80)
print("TEST RAG-HOLOGRAPHIC MEMORY v0.4")
print("Equipo NEBULA: Francisco Angulo de Lafuente y Ángel")
print("="*80)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Test 1: Inicialización HAM pura
print("\nPASO 1: Holographic Associative Memory")
try:
ham = HolographicAssociativeMemory(
memory_size=64, # Reduced para testing
pattern_dim=32,
num_wavelengths=3,
device=device
)
print(" PASS - HAM inicializada")
total_params = sum(p.numel() for p in ham.parameters())
print(f" - HAM parameters: {total_params}")
print(f" - Complex storage: {ham.holographic_matrix.numel()} values")
except Exception as e:
print(f" ERROR - HAM initialization: {e}")
return False
# Test 2: Holographic storage/retrieval
print("\nPASO 2: Holographic storage & retrieval")
try:
# Test patterns
test_stimulus = torch.randn(2, 32, device=device)
test_response = torch.randn(2, 32, device=device)
# Store association
store_result = ham(test_stimulus, test_response, mode='store')
# Retrieve association
retrieve_result = ham(test_stimulus, mode='retrieve')
print(" PASS - Holographic storage/retrieval")
print(f" - Storage capacity used: {store_result['storage_capacity_used']}")
print(f" - Max correlation: {retrieve_result['max_correlation'].item():.6f}")
print(f" - Avg correlation: {retrieve_result['avg_correlation'].item():.6f}")
except Exception as e:
print(f" ERROR - Holographic operations: {e}")
return False
# Test 3: RAG-Holographic System completo
print("\nPASO 3: RAG-Holographic System")
try:
rag_system = RAGHolographicSystem(
knowledge_dim=128,
query_dim=128,
memory_capacity=128,
device=device
)
print(" PASS - RAG-HAM system inicializado")
total_params = sum(p.numel() for p in rag_system.parameters())
print(f" - Total parameters: {total_params}")
except Exception as e:
print(f" ERROR - RAG-HAM system: {e}")
return False
# Test 4: Knowledge storage & retrieval
print("\nPASO 4: Knowledge storage & retrieval")
try:
# Mock knowledge base
knowledge_embeddings = torch.randn(5, 128, device=device) # 5 knowledge pieces
context_embeddings = torch.randn(5, 128, device=device) # 5 contexts
query_embedding = torch.randn(1, 128, device=device) # 1 query
# Store knowledge
with torch.no_grad():
storage_result = rag_system(
query=None,
knowledge=knowledge_embeddings,
context=context_embeddings,
mode='store'
)
# Retrieve knowledge
with torch.no_grad():
retrieval_result = rag_system(
query=query_embedding,
mode='retrieve'
)
print(" PASS - Knowledge operations")
print(f" - Storage mode: {storage_result['mode']}")
print(f" - Retrieved knowledge shape: {retrieval_result['retrieved_knowledge'].shape}")
print(f" - Attention weights shape: {retrieval_result['attention_weights'].shape}")
except Exception as e:
print(f" ERROR - Knowledge operations: {e}")
return False
# Test 5: Gradientes diferenciables
print("\nPASO 5: Gradientes diferenciables")
try:
query_grad = torch.randn(1, 128, device=device, requires_grad=True)
result = rag_system(query=query_grad, mode='retrieve')
loss = result['retrieved_knowledge'].sum()
start_time = time.time()
loss.backward()
backward_time = time.time() - start_time
print(" PASS - Gradientes RAG-HAM")
print(f" - Backward time: {backward_time:.3f}s")
print(f" - Query grad norm: {query_grad.grad.norm().item():.6f}")
# Verificar gradientes en HAM parameters
ham_params_with_grad = [p for p in rag_system.holographic_memory.parameters() if p.grad is not None]
if ham_params_with_grad:
ham_grad_norm = torch.stack([p.grad.norm() for p in ham_params_with_grad]).mean().item()
print(f" - HAM parameters grad: {ham_grad_norm:.6f}")
except Exception as e:
print(f" ERROR - Gradients: {e}")
return False
print(f"\n{'='*80}")
print("RAG-HOLOGRAPHIC MEMORY v0.4 - COMPLETADO EXITOSAMENTE")
print(f"{'='*80}")
print("- Holographic Associative Memory auténtica")
print("- Números complejos + interferencia holográfica")
print("- RAG knowledge retrieval integrado")
print("- Multi-head attention para relevance")
print("- PyTorch diferenciable end-to-end")
print("- Sin placeholders - holografía real")
return True
if __name__ == "__main__":
print("RAG-HOLOGRAPHIC MEMORY v0.4")
print("Implementación auténtica basada en investigación de Francisco Angulo")
print("Paso a paso, sin prisa, con calma")
success = test_holographic_memory_rag()
if success:
print("\nEXITO: RAG-Holographic Memory implementado")
print("Memoria holográfica + Retrieval-Augmented Generation")
print("Listo para integración con Photonic + Quantum")
else:
print("\nPROBLEMA: Debug holographic system necesario")