# NEBULA v0.4 - Technical Implementation Details **Equipo NEBULA: Francisco Angulo de Lafuente y Ángel Vega** --- ## 🔬 Photonic Neural Network Implementation ### Authentic Optical Physics Simulation The photonic component uses real optical physics equations implemented in CUDA-accelerated PyTorch: #### 1. Snell's Law Refraction ```python def apply_snells_law(self, incident_angle, n1, n2): """Apply Snell's law: n1*sin(θ1) = n2*sin(θ2)""" sin_theta1 = torch.sin(incident_angle) sin_theta2 = (n1 / n2) * sin_theta1 # Handle total internal reflection sin_theta2 = torch.clamp(sin_theta2, -1.0, 1.0) refracted_angle = torch.asin(sin_theta2) return refracted_angle ``` #### 2. Beer-Lambert Absorption ```python def beer_lambert_absorption(self, intensity, absorption_coeff, path_length): """Beer-Lambert law: I = I₀ * exp(-α * L)""" return intensity * torch.exp(-absorption_coeff * path_length) ``` #### 3. Fresnel Reflection ```python def fresnel_reflection(self, n1, n2): """Fresnel equations for reflection coefficient""" R = ((n1 - n2) / (n1 + n2))**2 T = 1.0 - R # Transmission coefficient return R, T ``` #### 4. Optical Interference ```python def optical_interference(self, wave1, wave2, phase_difference): """Two-wave interference pattern""" amplitude = torch.sqrt(wave1**2 + wave2**2 + 2*wave1*wave2*torch.cos(phase_difference)) return amplitude ``` ### Wavelength Spectrum Processing The model processes the full electromagnetic spectrum from UV to IR: ```python WAVELENGTH_RANGES = { 'UV': (200e-9, 400e-9), # Ultraviolet 'Visible': (400e-9, 700e-9), # Visible light 'NIR': (700e-9, 1400e-9), # Near-infrared 'IR': (1400e-9, 3000e-9) # Infrared } def process_spectrum(self, input_tensor): """Process input across electromagnetic spectrum""" spectral_outputs = [] for band, (λ_min, λ_max) in self.WAVELENGTH_RANGES.items(): # Calculate refractive index for wavelength n = self.sellmeier_equation(λ_min, λ_max) # Process with wavelength-dependent optics output = self.optical_ray_interaction(input_tensor, n, λ_min) spectral_outputs.append(output) return torch.stack(spectral_outputs, dim=-1) ``` --- ## ⚛️ Quantum Memory System ### Authentic Quantum Gate Implementation All quantum gates use proper unitary matrices following quantum mechanics: #### Pauli Gates ```python def pauli_x_gate(self): """Pauli-X (bit flip) gate""" return torch.tensor([[0, 1], [1, 0]], dtype=torch.complex64) def pauli_y_gate(self): """Pauli-Y gate""" return torch.tensor([[0, -1j], [1j, 0]], dtype=torch.complex64) def pauli_z_gate(self): """Pauli-Z (phase flip) gate""" return torch.tensor([[1, 0], [0, -1]], dtype=torch.complex64) ``` #### Rotation Gates ```python def rx_gate(self, theta): """X-rotation gate: RX(θ) = exp(-iθX/2)""" cos_half = torch.cos(theta / 2) sin_half = torch.sin(theta / 2) return torch.tensor([ [cos_half, -1j * sin_half], [-1j * sin_half, cos_half] ], dtype=torch.complex64) def ry_gate(self, theta): """Y-rotation gate: RY(θ) = exp(-iθY/2)""" cos_half = torch.cos(theta / 2) sin_half = torch.sin(theta / 2) return torch.tensor([ [cos_half, -sin_half], [sin_half, cos_half] ], dtype=torch.complex64) ``` ### 4-Qubit Quantum Circuits Each quantum memory neuron operates a 4-qubit system: ```python def create_4qubit_circuit(self, input_data): """Create and execute 4-qubit quantum circuit""" # Initialize 4-qubit state |0000⟩ state = torch.zeros(16, dtype=torch.complex64) state[0] = 1.0 # |0000⟩ state # Apply parametrized quantum gates for i in range(4): # Single-qubit rotations theta_x = input_data[i * 3] theta_y = input_data[i * 3 + 1] theta_z = input_data[i * 3 + 2] state = self.apply_single_qubit_gate(state, self.rx_gate(theta_x), i) state = self.apply_single_qubit_gate(state, self.ry_gate(theta_y), i) state = self.apply_single_qubit_gate(state, self.rz_gate(theta_z), i) # Apply entangling gates (CNOT) for i in range(3): state = self.apply_cnot_gate(state, control=i, target=i+1) return state ``` ### Quantum State Measurement ```python def measure_quantum_state(self, quantum_state): """Measure quantum state and return classical information""" # Calculate measurement probabilities probabilities = torch.abs(quantum_state)**2 # Expectation values for Pauli operators expectations = [] for pauli_op in [self.pauli_x, self.pauli_y, self.pauli_z]: expectation = torch.real(torch.conj(quantum_state) @ pauli_op @ quantum_state) expectations.append(expectation) return torch.stack(expectations) ``` --- ## 🌈 Holographic Memory System ### Complex Number Holographic Storage The holographic memory uses complex numbers to store interference patterns: ```python def holographic_encode(self, object_beam, reference_beam): """Create holographic interference pattern""" # Convert to complex representation object_complex = torch.complex(object_beam, torch.zeros_like(object_beam)) reference_complex = torch.complex(reference_beam, torch.zeros_like(reference_beam)) # Create interference pattern: |O + R|² total_beam = object_complex + reference_complex interference_pattern = torch.abs(total_beam)**2 # Store phase information phase_pattern = torch.angle(total_beam) # Combine amplitude and phase hologram = torch.complex(interference_pattern, phase_pattern) return hologram ``` ### FFT-Based Spatial Frequency Processing ```python def spatial_frequency_encoding(self, spatial_pattern): """Encode spatial patterns using FFT""" # 2D Fourier transform for spatial frequencies fft_pattern = torch.fft.fft2(spatial_pattern) # Extract magnitude and phase magnitude = torch.abs(fft_pattern) phase = torch.angle(fft_pattern) # Apply frequency-domain filtering filtered_magnitude = self.frequency_filter(magnitude) # Reconstruct complex pattern filtered_pattern = filtered_magnitude * torch.exp(1j * phase) return filtered_pattern ``` ### Associative Memory Retrieval ```python def associative_retrieval(self, query_pattern, stored_holograms): """Retrieve associated memories using holographic correlation""" correlations = [] for hologram in stored_holograms: # Cross-correlation in frequency domain query_fft = torch.fft.fft2(query_pattern) hologram_fft = torch.fft.fft2(hologram) # Correlation: F⁻¹[F(query) * conj(F(hologram))] correlation = torch.fft.ifft2(query_fft * torch.conj(hologram_fft)) # Find correlation peak max_correlation = torch.max(torch.abs(correlation)) correlations.append(max_correlation) return torch.stack(correlations) ``` --- ## 🚀 RTX GPU Optimization ### Tensor Core Optimization The RTX optimizer aligns operations for maximum Tensor Core efficiency: ```python def optimize_for_tensor_cores(self, layer_dims): """Optimize layer dimensions for Tensor Core efficiency""" optimized_dims = [] for dim in layer_dims: if self.has_tensor_cores: # Align to multiples of 8 for FP16 Tensor Cores aligned_dim = ((dim + 7) // 8) * 8 else: # Standard alignment for regular cores aligned_dim = ((dim + 3) // 4) * 4 optimized_dims.append(aligned_dim) return optimized_dims ``` ### Mixed Precision Training ```python def mixed_precision_forward(self, model, input_tensor): """Forward pass with automatic mixed precision""" if self.use_mixed_precision: with torch.amp.autocast('cuda', dtype=self.precision_dtype): output = model(input_tensor) else: output = model(input_tensor) return output def mixed_precision_backward(self, loss, optimizer): """Backward pass with gradient scaling""" if self.use_mixed_precision: # Scale loss to prevent underflow self.grad_scaler.scale(loss).backward() # Unscale gradients and step self.grad_scaler.step(optimizer) self.grad_scaler.update() else: loss.backward() optimizer.step() ``` ### Dynamic Memory Management ```python def optimize_memory_usage(self): """Optimize GPU memory allocation patterns""" # Clear fragmented memory torch.cuda.empty_cache() # Set memory fraction to prevent OOM if torch.cuda.is_available(): torch.cuda.set_per_process_memory_fraction(0.9) # Enable memory pool for efficient allocation if hasattr(torch.cuda, 'set_memory_pool'): pool = torch.cuda.memory.MemoryPool() torch.cuda.set_memory_pool(pool) ``` --- ## 🔧 Model Integration Architecture ### Unified Forward Pass The complete NEBULA model integrates all components: ```python def unified_forward(self, input_tensor): """Unified forward pass through all NEBULA components""" batch_size = input_tensor.shape[0] results = {} # 1. Photonic processing photonic_output = self.photonic_raytracer(input_tensor) results['photonic_features'] = photonic_output # 2. Quantum memory processing quantum_output = self.quantum_memory_bank(photonic_output) results['quantum_memory'] = quantum_output # 3. Holographic memory retrieval holographic_output = self.holographic_memory( query=quantum_output, mode='retrieve' ) results['holographic_retrieval'] = holographic_output # 4. Feature integration integrated_features = torch.cat([ photonic_output, quantum_output, holographic_output['retrieved_knowledge'] ], dim=-1) # 5. Final classification main_output = self.classifier(integrated_features) constraint_violations = self.constraint_detector(main_output) results.update({ 'main_output': main_output, 'constraint_violations': constraint_violations, 'integrated_features': integrated_features }) return results ``` --- ## 📊 Performance Optimization Techniques ### Gradient Flow Optimization ```python def optimize_gradients(self): """Ensure stable gradient flow through all components""" # Gradient clipping for stability torch.nn.utils.clip_grad_norm_(self.parameters(), max_norm=1.0) # Check for gradient explosion/vanishing total_norm = 0 for p in self.parameters(): if p.grad is not None: param_norm = p.grad.data.norm(2) total_norm += param_norm.item() ** 2 total_norm = total_norm ** (1. / 2) return total_norm ``` ### Computational Efficiency Monitoring ```python def profile_forward_pass(self, input_tensor): """Profile computational efficiency of forward pass""" import time torch.cuda.synchronize() start_time = time.time() # Component-wise timing timings = {} # Photonic timing torch.cuda.synchronize() photonic_start = time.time() photonic_out = self.photonic_raytracer(input_tensor) torch.cuda.synchronize() timings['photonic'] = time.time() - photonic_start # Quantum timing torch.cuda.synchronize() quantum_start = time.time() quantum_out = self.quantum_memory_bank(photonic_out) torch.cuda.synchronize() timings['quantum'] = time.time() - quantum_start # Holographic timing torch.cuda.synchronize() holo_start = time.time() holo_out = self.holographic_memory(quantum_out, mode='retrieve') torch.cuda.synchronize() timings['holographic'] = time.time() - holo_start torch.cuda.synchronize() total_time = time.time() - start_time timings['total'] = total_time return timings ``` --- ## 🧪 Scientific Validation Framework ### Statistical Significance Testing ```python def validate_statistical_significance(self, model_scores, baseline_scores, alpha=0.05): """Perform statistical significance testing""" from scipy import stats # Perform t-test t_statistic, p_value = stats.ttest_ind(model_scores, baseline_scores) # Calculate effect size (Cohen's d) pooled_std = np.sqrt(((len(model_scores)-1)*np.std(model_scores)**2 + (len(baseline_scores)-1)*np.std(baseline_scores)**2) / (len(model_scores) + len(baseline_scores) - 2)) cohens_d = (np.mean(model_scores) - np.mean(baseline_scores)) / pooled_std is_significant = p_value < alpha return { 't_statistic': t_statistic, 'p_value': p_value, 'cohens_d': cohens_d, 'is_significant': is_significant, 'effect_size': 'large' if abs(cohens_d) > 0.8 else 'medium' if abs(cohens_d) > 0.5 else 'small' } ``` ### Reproducibility Verification ```python def verify_reproducibility(self, seed=42, num_runs=5): """Verify model reproducibility across multiple runs""" results = [] for run in range(num_runs): # Set all random seeds torch.manual_seed(seed + run) np.random.seed(seed + run) torch.cuda.manual_seed_all(seed + run) # Ensure deterministic operations torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # Run evaluation model_copy = self.create_fresh_model() accuracy = self.evaluate_model(model_copy) results.append(accuracy) # Calculate consistency metrics mean_accuracy = np.mean(results) std_accuracy = np.std(results) cv = std_accuracy / mean_accuracy # Coefficient of variation return { 'mean_accuracy': mean_accuracy, 'std_accuracy': std_accuracy, 'coefficient_variation': cv, 'all_results': results, 'is_reproducible': cv < 0.05 # Less than 5% variation } ``` --- This technical documentation provides the complete implementation details for all NEBULA v0.4 components, ensuring full reproducibility and scientific transparency. **Equipo NEBULA: Francisco Angulo de Lafuente y Ángel Vega** *Project NEBULA - Authentic Photonic Neural Networks*