File size: 7,829 Bytes
f8803e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "c15deb04-94a0-4073-a174-adcd22af10b8",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "✅ Создана новая модель: <class 'diffusers.models.autoencoders.autoencoder_asym_kl.AsymmetricAutoencoderKL'>\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "e2063f203ab844489f3c02cb9c2ae70b",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "config.json:   0%|          | 0.00/801 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "d33d67a744ee43b3b9eaeba9228ba976",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "vae/diffusion_pytorch_model.safetensors:   0%|          | 0.00/168M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "The config attributes {'block_out_channels': [128, 128, 256, 512, 512], 'force_upcast': False} were passed to AsymmetricAutoencoderKL, but are not expected and will be ignored. Please verify your config.json configuration file.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "--- Перенос весов ---\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|██████████| 248/248 [00:00<00:00, 87271.36it/s]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "✅ Перенос завершён.\n",
      "Статистика:\n",
      "  перенесено: 216\n",
      "  дублировано: 26\n",
      "  пропущено: 0\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "from diffusers.models import AsymmetricAutoencoderKL, AutoencoderKL\n",
    "import torch\n",
    "from tqdm import tqdm\n",
    "\n",
    "# ---- Конфиг новой модели ----\n",
    "config = {\n",
    "    \"_class_name\": \"AsymmetricAutoencoderKL\",\n",
    "    \"act_fn\": \"silu\",\n",
    "    \"in_channels\": 3,\n",
    "    \"out_channels\": 3,\n",
    "    \"scaling_factor\": 1.0,\n",
    "    \"norm_num_groups\": 32,\n",
    "    \"down_block_out_channels\": [128, 256, 512, 512],\n",
    "    \"down_block_types\": [\n",
    "        \"DownEncoderBlock2D\",\n",
    "        \"DownEncoderBlock2D\",\n",
    "        \"DownEncoderBlock2D\",\n",
    "        \"DownEncoderBlock2D\",\n",
    "    ],\n",
    "    \"latent_channels\": 16,\n",
    "    # Новый UpDecoderBlock добавлен в начало\n",
    "    \"up_block_out_channels\": [128, 128, 256, 512, 512],\n",
    "    \"up_block_types\": [\n",
    "        \"UpDecoderBlock2D\",\n",
    "        \"UpDecoderBlock2D\",\n",
    "        \"UpDecoderBlock2D\",\n",
    "        \"UpDecoderBlock2D\",\n",
    "        \"UpDecoderBlock2D\",\n",
    "    ],\n",
    "}\n",
    "\n",
    "# ---- Создание пустой асимметричной модели ----\n",
    "vae = AsymmetricAutoencoderKL(\n",
    "    act_fn=config[\"act_fn\"],\n",
    "    down_block_out_channels=config[\"down_block_out_channels\"],\n",
    "    down_block_types=config[\"down_block_types\"],\n",
    "    latent_channels=config[\"latent_channels\"],\n",
    "    up_block_out_channels=config[\"up_block_out_channels\"],\n",
    "    up_block_types=config[\"up_block_types\"],\n",
    "    in_channels=config[\"in_channels\"],\n",
    "    out_channels=config[\"out_channels\"],\n",
    "    scaling_factor=config[\"scaling_factor\"],\n",
    "    norm_num_groups=config[\"norm_num_groups\"],\n",
    "    layers_per_down_block=2,\n",
    "    layers_per_up_block=2,\n",
    "    sample_size=1024\n",
    ")\n",
    "\n",
    "vae.save_pretrained(\"asymmetric_vae_empty\")\n",
    "print(\"✅ Создана новая модель:\", type(vae))\n",
    "\n",
    "# ---- Функция переноса весов старого VAE ----\n",
    "def transfer_weights(old_path, new_path, save_path=\"asymmetric_vae\", device=\"cuda\", dtype=torch.float16):\n",
    "    old_vae = AutoencoderKL.from_pretrained(old_path, subfolder=\"vae\").to(device, dtype=dtype)\n",
    "    new_vae = AsymmetricAutoencoderKL.from_pretrained(new_path).to(device, dtype=dtype)\n",
    "\n",
    "    old_sd = old_vae.state_dict()\n",
    "    new_sd = new_vae.state_dict()\n",
    "\n",
    "    transferred_keys = set()\n",
    "    transfer_stats = {\"перенесено\": 0, \"дублировано\": 0, \"пропущено\": 0}\n",
    "\n",
    "    print(\"\\n--- Перенос весов ---\")\n",
    "    for k, v in tqdm(old_sd.items()):\n",
    "        # Копирование энкодера и прочих совпадающих ключей\n",
    "        if (\"encoder\" in k) or (\"quant_conv\" in k) or (\"post_quant_conv\" in k):\n",
    "            if k in new_sd and new_sd[k].shape == v.shape:\n",
    "                new_sd[k] = v.clone()\n",
    "                transferred_keys.add(k)\n",
    "                transfer_stats[\"перенесено\"] += 1\n",
    "            continue\n",
    "\n",
    "        # Копирование декодера (без сдвига)\n",
    "        if \"decoder.up_blocks\" in k:\n",
    "            if k in new_sd and new_sd[k].shape == v.shape:\n",
    "                new_sd[k] = v.clone()\n",
    "                transferred_keys.add(k)\n",
    "                transfer_stats[\"перенесено\"] += 1\n",
    "            continue\n",
    "\n",
    "    # Дублирование весов старого первого 512→512 блока в новый блок 64→128 для апскейла\n",
    "    ref_prefix = \"decoder.up_blocks.1\"\n",
    "    new_prefix = \"decoder.up_blocks.0\"\n",
    "    for k, v in old_sd.items():\n",
    "        if k.startswith(ref_prefix) and new_prefix + k[len(ref_prefix):] in new_sd:\n",
    "            new_k = k.replace(ref_prefix, new_prefix)\n",
    "            if new_sd[new_k].shape == v.shape:\n",
    "                new_sd[new_k] = v.clone()\n",
    "                transferred_keys.add(new_k)\n",
    "                transfer_stats[\"дублировано\"] += 1\n",
    "\n",
    "    # Загрузка и сохранение\n",
    "    new_vae.load_state_dict(new_sd, strict=False)\n",
    "    new_vae.save_pretrained(save_path)\n",
    "\n",
    "    print(\"\\n✅ Перенос завершён.\")\n",
    "    print(\"Статистика:\")\n",
    "    for k, v in transfer_stats.items():\n",
    "        print(f\"  {k}: {v}\")\n",
    "\n",
    "# ---- Запуск переноса ----\n",
    "transfer_weights(\"AiArtLab/simplevae\", \"asymmetric_vae_empty\", save_path=\"vae3\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "59fcafb9-6d89-49b4-8362-b4891f591687",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}